Metagenomics with only three commands

Silas Kieser

Content

- Assembly based metagenomics
- Metagenome-atlas
- Compositional-data analysis

To assemble or not to assemble

Assembly based metagenomics

Why doing metagenomics?

Who is there?

What are they doing?

Composition

Functional potential

Problem:

Insufficient references

de novo assembly

Assembly is challenging

Goal: Assemble genomes from metagenomes

Goal: Assemble genomes from metagenomes

Reads

Contigs

Annotate genes on contigs

Gene1, KO0001 Gene2 Gene fragment 3.

Era of gene catalogs

Functional potential

Bacteroidetes sp

Analyze a metagenome

Who is there?

What are they doing?

Analyze a metagenome

Who is doing what?

"Genes are expressed within cells, not in a homogenized cytoplasmic soup." Katherine McMahon

Functional annotation

Why is is called "binning"?

The beginning of binning

Tyson et al. 2004

Metagenome-assembled genomes (MAGs)

1. Genecatalogs

2. MAGs

Metagenome-Atlas

Others on Metagenome-Atlas

Aria Hahn, Co-founder Koonkie inc. Thanks for the great tool! I've been using it in my research and telling everyone about it!

Taylor Reiter Graduate from UC Davis.

Learners were excited about all of the functionality that **just worked** without them having to type out all of the steps.

Josh Neufeld, Professor at University of Waterloo. Very useful package for my lab.

Start in three commands!

mamba install metagenome-atlas
atlas init path/to/fastq
atlas run genomes

1 Dependency

conda install <the tool I need>

Why you need **Snake**make?

Snakemake

Create rules

rule plot: input: "raw/{dataset}.csv" output: "plots/{dataset}.pdf" shell: "somecommand {input} {output}"

Install dependencies automatically

channels.
– bioconda
····- r
dependencies:-
<pre>- python=2.7-</pre>
<pre>- checkm-genome=1.0.7-</pre>
– prodigal >=2.6.1–

Start a project

mamba install metagenome-atlas
atlas init path/to/fastq

Samples.tsv

	Reads_R1	Reads_R2
sample1		
sample2		

Config.yaml

#######################################	
# Binning	
#######################################	
final_binner: DASTool	<pre># [SemiBin, DASTool, vamb, maxbin]</pre>
<pre>binner: - metabat - maxbin # - vamb</pre>	≠ If DASTool is used as final_binner,
metabat:	
sensitivity: sensitive	
<pre>min_contig_length: 1500 # metaba</pre>	t needs >1500
maxbin:	
<pre>max_iteration: 50</pre>	
prob_threshold: 0.9	
min contig length: 1000	

Start a project

mamba install metagenome-atlas
atlas init-public SRA_ID

Run atlas

atlas run genecatalog

atlas run genomes

1. Quality control

Position

Image: Illumina Inc

1. Quality control

- Host removal
- Good-quality reads

Quality report

- Uses metaSpades or megahit
- Pre-processing
 - Error correction
 - Paired-end merging (pre-assembly)

- Uses metaSpades or megahit
- Pre-processing
 - Error correction
 - Paired-end merging (pre-assembly)

- Uses metaSpades or megahit
- Pre-processing
 - Error correction
 - Paired-end merging (pre-assembly)
- Hybrid assembly supported

Assembly report

3. Binning

3. Binning

a) Binning

- b) Quality estimation & Bin refinement
- c) Dereplication

How do we bin contigs into genomes?

How do we bin contigs into genomes?

3 Binning

Single-sample / Cross mapping:

- Metabat2
- Maxbin2

Co-Binning

- Vamb
- SemiBin

Co-abundance

Option 1: Single-sample assembly/Binnig

Co-abundance

Option 2: Cross mapping

Co-abundance

3 Binning

Single-sample / Cross mapping:

- Metabat2
- Maxbin2

Co-Binning

- Vamb
- SemiBin

Quality estimation

(Essential) single-copy genes

Bin Refinement

DAS Tool: Choose best Bin

Atlas uses the same tools as largescale studies on the Human microbiome

	CIBO	EBI	JGI	ATLAS	
	Pasolli et al. 2019	Almeida et al. 2019	Nayfach et al. 2019	Kieser et al. 2020	
Assembly	metaSpades Megahit				
Binning	Metabat	Metabat	Metabat Maxbin Concoct DASTool	Metabat Maxbin DASTool VAMB SemiBin	
Quality estimation	CheckM				

Atlas workflow

De-replication

Average nucleotide Identity (ANI)

95% ANI used as species threshold

De-replication

4. Annotation

4. Annotation

What does it all mean?

4. Annotation

- a) Functions
- b) Taxonomy

Taxonomic annotation

Genome Taxonomy database (GTDB)

Genome Taxonomy database

Proposed rearrangements

Parks et al. 10.1038/nbt.4229.
Genome Taxonomy database

Doi: <u>10.1093/nar/gkab776</u>

Functional annotation

Functional annotation

Pathway inference

Quantification

Quantification

What is the abundance of a genome?

What is the abundance of a genome?

Abundance of pathways

Sum of the species-abundance for all species where the pathway is present

Abundance of pathways

Gene catalog

atlas run genecatalog

atlas run genomes

Atlas workflow

Annotation

- CAZy
- COGs
- (KEGG)

New features in V2.9

- Direct download from NCBI
- Strains

atlas run genomes strains

Questions

The future of assembly-based metagenomics

Patescibacteria don't have all universal marker genes!

Large-scale re-assembly era

OPEN

Check for updates

Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life

Donovan H. Parks[®], Christian Rinke[®], Maria Chuvochina, Pierre-Alain Chaumeil, Ben J. Woodcroft, Paul N. Evans, Philip Hugenholtz[®] and Gene W. Tyson^{*}

OPEN

A unified catalog of 204,938 reference genomes from the human gut microbiome

Improved mapping rate

Post-assembly era

Compositional data analysis

Relative abundance

What to do with the unmapped reads?

Interpret microbial abundances as ratios

Calculate ratios

- A) Based on phylogeny
- B) Centered log-ratios (CLR)
- C) Machine-learning based on ratios

Phylofactor

Centered log ratios

Impute zeros

- 1. Take log
- 2. Subtract sample-mean

Centered log ratios

RPCA = PCA based on CLR

Martino et al. 2019

Martino et al. 2019

silask.github.io Chapter 5 of my thesis

Thank you for your attention.

Questions?

Cell Metabolism

Warmth Prevents Bone Loss Through the Gut Microbiota

Authors

Claire Chevalier, Silas Kieser, Melis Çolakoğlu, ..., Andrew Macpherson, Nicolas Bonnet, Mirko Trajkovski

Article

L

Osteoporosis incidence correlates with lower temperature

How does it work?

Gene expression indicates significant bone remodeling upon Warm exposure

D

Ova34°C vs OvaRT Reactome pathways

Cell Metabolism

Warmth Prevents Bone Loss Through the Gut Microbiota

20 Relative abundance S-adenosyl (3.5.3.11) Ornithine of bacteria [%] 15 L-methionine 0 Agmatine 4.1.1.7 (4.1.1.50)O S-adenosyl N1-Acetylputrescine 10 O -methionamine Putrecine 2.3.1.57 2.5.1.16 > O 5 Spermidine (4.1.1.96) Spermine N1-Acetyl N1-Acetyl spermidine spermine Carboxy-0 spermidine 0 RT Hot N1.N8 N1.N12 diacetylspermidine diacetylspermine Akkermansia

Pathway \leftrightarrow Species

Spermine synthesis

How does it work?

Osteoclasts

Images: Derrien et al. 2016, Servier Art

Run atlas

Install metagenome-atlas

conda install metagenome-atlas

Install metagenome-atlas

mamba install metagenome-atlas

Start a project

mamba install metagenome-atlas
atlas init path/to/fastq

Samples.tsv

	Reads_R1	Reads_R2
sample1		
sample2		

Config.yaml

######################################		
final_binner: DASTool	≠ [SemiBin, DASTool, vamb, maxbin]	
<pre>binner: - metabat - maxbin # - vamb</pre>	<pre># If DASTool is used as final_binner,</pre>	
<pre>metabat: sensitivity: sensitive min_contig_length: 1500 # metabat needs >1500</pre>		
<pre>maxbin: max_iteration: 50 prob_threshold: 0.9 min contig length: 1000</pre>		

Run atlas

atlas run genecatalog

atlas run genomes

Run atlas

atlas run genecatalog

atlas run genomes strains