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Abstract

Our gut flora, the microbiome, plays an indispensable role in our health.
Changes in the microbiome have been linked to an increasing list of diseases.
Metagenomics is a technique that allows the sequencing of microbiomes di-
rectly from samples, giving valuable insight into the composition and func-
tional potential of microbial populations. The analysis of metagenomic data
is complex and depends on the availability of reference genomes. This work
describes computational methods that allow the analysis of microbiomes with
a lack of reference genomes by assembling genomes from the metagenomic
data. We demonstrate how our methods can be used to infer the functional
potential of a microbiome and how they allow us to link each function to the
responsible species. We could predict changes in metabolites that were con-
firmed by targeted measurements. The mouse is the most used model for
studying the impact of microbiota on its host. However, the species living in
the mouse gut remain poorly characterized. By analyzing all publicly available
metagenomes from the mouse gut, we created a comprehensive catalog of all
bacterial species commonly living in the gut of laboratory mice. We assem-
bled over 30’000 bacterial genomes, as well as the sequences from viruses and
plasmids. Our catalog effectively answers the need for reference genomes for
this microbiome. It allows efficient analysis of mouse gut metagenomes at the
species and subspecies level. We discovered that mice and humans harbor a
largely distinct set of species in their gastrointestinal tracts, an analysis which
was hereto unfeasible.





Résumé

Notre flore intestinale, le microbiote, joue un rôle indispensable dans notre
santé. Des changements dans le microbiote sont associés à une liste croissante
de maladies. La métagénomique est une technique qui permet le séquençage
de microbiotes directement à partir d’échantillons, donnant un aperçu utile
de la composition et du potentiel fonctionnel des populations microbiennes.
L’analyse des données métagénomiques est complexe et dépend de la disponi-
bilité de génomes de référence. Ce travail décrit des méthodes de calcul qui
permettent l’analyse de microbiotes lors d’un manque de génomes de référence
en assemblant des génomes à partir des données métagénomiques. Nous dé-
montrons comment nos méthodes peuvent être utilisées pour déduire le po-
tentiel fonctionnel d’un microbiote et comment elles nous permettent de lier
chaque fonction à l’espèce responsable. Nous avons pu prédire des change-
ments dans les métabolites qui ont été confirmés par une analyse ciblée. La
souris est le modèle le plus utilisé pour étudier l’impact du microbiote sur son
hôte. Cependant, les espèces vivant dans l’intestin de la souris restent mal car-
actérisées. En analysant tous les métagénomes de l’intestin de la souris en libre
accès, nous avons créé un catalogue complet de toutes les espèces bactéri-
ennes vivant couramment dans l’intestin des souris de laboratoire. Nous avons
assemblé plus de 30’000 génomes bactériens, ainsi que les séquences de virus
et de plasmides. Notre catalogue répond efficacement au besoin de génomes de
référence pour ce microbiote. Il permet une analyse efficace des métagénomes
intestinaux de souris au niveau des espèces et des sous-espèces. Nous avons
découvert que les souris et les humains hébergent un ensemble d’espèces large-
ment distinct dans leur système digestif, une analyse qui n’était jusqu’à présent
pas réalisable.
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Terms & Acronyms

Microbe Microorganism. A tiny organism. Most microbes are
prokaryotes, but also some small eukaryotes are counted as
microbes1.

Prokaryotes Unicellular organisms that do not contain a nucleus. Bacte-
ria and Archaea.

Eukaryotes All organisms that contain a nucleus. All animals, plants,
fungi, but also protists

Genome Main genetic material of a cell.
Sequencing The process of reading DNA, often in fractions
Read A (short) DNA sequence, the output of a sequencer
Assembly Theprocess of putting small DNA fragments together to cre-

ate longer ones
Contig A continuous DNA sequence, often the result of an assembly

of multiple reads
Amplicon sequencing Sequencing of an amplified DNA region. I use it as synonym

for 16S rDNA sequencing
16S rDNA sequencing Sequencing (parts of) the 16S that allows the identification

of microbes
16S rDNA The DNA of the gene for the small ribosomal subunit in

prokaryotes
Primers Small DNA or used to initiate PCR amplification
PCR Polymerase chain reaction. A laboratory method invented

in 1983 that allows to amplify even small amounts of DNA
fragments up to 10kbp in length.

Metagenome Collection of all genomes from an environment. See Box.
Metagenomics The study of metagenomes
MAG Metagenome assembled genome
kbp Killo base pairs = 1000 bp, unit for measurnign the lenght of

DNA
CLR Centered log ratio

1The definition is not very clear as discussed in ”What Counts as a Microbe?” on asm.org

https://asm.org/Articles/2021/April/What-Counts-as-a-Microbe




Introduction

What is the role, in the overall scheme of creation, of some of these little
beings who are the agents of fermentation, the agents of putrefaction,
of disorganization of everything that life has had on the surface of the
globe? This role is immense, marvelous, really moving. Maybe one day,
I will be given the opportunity to explain some of these results.

— Louis Pasteur1

Ex nihilo nihil fit (From nothing, nothing comes) is a fundamental philosophi-
cal principle. There might still be a debate in metaphysics about whether the
universe could arise from nothing and what that nothing would be. In biology,
the idea of spontaneous creation was eliminated from the discipline by Louis
Pasteur in the middle of the 19th century. He not only showed that a closed,
sterile system remains sterile but at the same time that microbes are all around
us. He became one of the founders of Microbiology and postulated that germs
are the cause of many diseases. The change in mentality led to the identifi-
cation of many diseases’ pathogens. Lives could be saved by simple measures
such as hand sanitation, which was not a common practice for clinicians at that
time.

Even if it was possible to see microbes since Antonie van Leeuwenhoek discov-
ered the microscope, a large fraction of the microbial diversity was still hid-
den until 1950, when Robert. E. Hungate developed his technique to cultivate
anaerobic microbes (Hungate, 1944). Even with the ability to culture anaerobic
microorganisms, the vast majority of microbes went unnoticed. In 1985, it was
estimated that less than 1% of the microorganisms found in an environmental
sample could be cultured on plates. This fact came to be known as ”the great

1René Vallery-Radot (1902). The life of Pasteur. New York: Phillips McClure, p. 142
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plate count anomaly” (Staley & Konopka, 1985) and spurred the interest in se-
quencing microbes directly from the environment.

1.1 The history of microbiome sequencing

[Sequencing] ... has been at the center of all my research since 1943,
both because of its intrinsic fascination and my conviction that a
knowledge of sequences could contribute much to our understanding
of living matter

— Frederick Sanger2

In 1977, Frederick Sanger started to develop his sequencing method (Sanger et
al., 1977), which kicked off a revolution in sequencing. Even before that, re-
searchers studied microorganisms by sequencing short fragments of ribonu-
cleic acid (RNA) (Heather & Chain, 2016). So determined Carl. R. Woese &
George. E. Fox 20 years before the first microbial genome was sequenced, that
living organisms consist not only of Eukaryotes3 and bacteria but that there is
a third domain: the Archaea (Woese & Fox, 1977). The discovery of a whole new
domain of life was revolutionary for its time and was met with a lot of criticism
(Goldenfeld & Pace, 2013). It showed that life evolved not in a linear fashion from
simple to more complex life, but that there are deep branches in the tree of life
going all the way down to its root. ”The 1977 paper is one of the most influential
in microbiology and arguably, all of biology. It ranks with the works of Watson
and Crick and Darwin, providing an evolutionary framework for the incredible
diversity of the microbial world” (Nair, 2012).

More practically, Carl. R. Woese & George. E. Fox showed convincingly that
(microbial) life could be analyzed by sequencing. They differentiated the or-
ganisms based on the small ribosomal unit, whose RNA is highly abundant in
cells. The corresponding gene, also known as the 16S gene (18S in Eukaryotes),
is present in all living organisms. The functional constraints on the ribosome
keep the sequence of the rRNA-gene comparable between all domains of life.
The publication from 1977 consists mainly of one table that shows how the 16S
(18S) sequence from representatives of the three domains of life aremore similar
within the domain than between the domains.

2Frederick Sanger, Biographical, NobelPrize.org
3Organisms that have a nucleus: animals, plants, fungi, protists...

https://www.nobelprize.org/prizes/chemistry/1980/sanger/biographical/
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However, the sequencing of the small ribosomal unit still required the culti-
vation of the species under investigation, which was difficult, especially for
the new domain of archaea. The solution to this problem came almost ten
years later. During this time, the polymerase chain reaction (PCR) was invented,
which allowed the amplification of small amounts of DNA, and the Sanger se-
quencing became widely available. In 1985, Norman R. Pace and co-workers
developed a technique to rapidly sequence the 16S gene directly from the en-
vironment (Lane et al., 1985). They propose universal primers for amplification
of the 16S gene. Norman Pece came to be named ”The man who blew the door
off the microbial world” (Young, 2017), as his technique allowed for the first time
to see the full diversity of microbes in a sample. Again 10 years later, the first
time the human gut microbiome was sequenced (Wilson & Blitchington, 1996),
see also box.

1.1.1 16S amplicon sequencing

Today amplicon sequencing of the 16S gene is a routine experiment: First, DNA
is extracted from a sample, then PCR is used to amplify a part of the 16S gene.
Not all regions of the 16S genes are equally conserved between taxa. Con-
served regions are interspaced by 9 variable regions (Fig. 1.1 on the following
page). These variable regions belong to loops in the ribosome with little con-
straints and are therefore free to evolve. The universal primers target the flank-
ing conserved regions around one or multiple variable regions, which then are
sequenced.

As with almost everything in biology, there are no rules that apply without ex-
ception, and so not the universal primer sites of the 16S are not universal. Dif-
ferent versions of primer(-mixtures) are proposed for different target micro-
biomes (For example, Sim et al., 2012). Also, not all variable regions are suited
to discriminating all taxa, and PCR bias can artificially increase specific species.
Therefore, it is generally accepted that 16S amplicon sequencing, based on one
or two variable regions, can classify organisms down to the genus level but is
not suited to classify at species level robustly (See section 6.2.1 for an in-depth
discussion). Despite all these drawbacks, 16S sequencing is the most used tech-
nique to analyze microbiomes at a low cost. Many of these limitations are ad-
dressed by long-read sequencing, which allows the sequencing of all nine vari-
able regions (Karst et al., 2018).



4 Introduction

Fig. 1.1 Variability across the 16S gene based on the alignment of a
single representative sequence for each known species present in
the Greengenes database. Sequences were aligned against a single
reference 16S gene for Escherichia coli K-12 MG1655. Gray panels
depict variable regions defined by commonly used primer-binding
sites.
Adapted from Johnson et al., 2019

The human microbiome

The ubiquity of microbial life was confirmed over and over again. It is
difficult to imagine a place on earth that is not populated with microbial
life, and it is even speculated that Mars is the home of microbes brought
from earth (Mason, 2021). Interestingly, the human gut is among the most
densely populated habitats for microorganisms in the world (Whitman et
al., 1998). Also, the gut is densely covered with immune cells from within
(Vijay-Kumar et al., 2014), indicating that the gut is an essential point in
host-microbe interaction. Bacteria are the most numerous domain of
life in the human gut microbiota (Guarner & Malagelada, 2003). Archaea,
fungi, and protists belong to the microorganism living in the human gut.
Not surprisingly, phages and other viruses outnumber the living organ-
isms and play the critical role of predators in this environment (Fernández
et al., 2018).
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1.1.2 Metagenomics4

Even with the improved techniques, the 16S rDNA sequencing allows only to
identify the taxonomy of a prokaryote. If the microbe is not present in a data-
base, one can match the sequence to the closest relative, but no more informa-
tion can be gained from the small ribosomal unit. What can one do if one wants
to know more about an unknown species of prokaryote? Ideally, one wants to
culture the microbe, but this might not be easy, especially as we do not know
which medium we would need to cultivate the prokaryote.

Stein et al. faced the same challenge: They wanted to know more about an un-
cultured clade of marine Archaea. They knew from 16S marker surveys that
this clade is abundant in the surface water of the Hawaiian ocean. Stein et al.
were the first to use a metagenomic sequencing approach. They extracted DNA
fragments from the ocean water and cloned them into a library of E. coli. Clones
that contained the 16S signature of the clade of interest were selected for se-
quencing. Sequencing was labor-intensive and involved digesting the fragment
of interest with restriction enzymes and cloning sub-fragments into plasmids
before sequencing the sub-fragments in steps of less than 1kpb in length. Using
a technique called primer-walking, Stein et al. were able to, in the best case,
rebuild a 40kb-fragment around the 16S gene.5 Even though this fragment did
not contain any genes with novel functions, their study laid the groundwork for
a new era of environmental sequencing of uncultured species.

Shotgun genomics

Primer walking is inherently slow as one has to finish sequencing one step to
design a primer for the next. Shotgun sequencingwas invented in order to cir-
cumvent this constraint (Staden, 1979; Anderson, 1981). DNA is shredded into
random (overlapping) fragments that are assembled with the aid of a computer.
Because of computational limitations, shotgun metagenomics was initially lim-
ited to DNA fragments of 50kb. It allowed the sequencing of viruses, but to
sequence larger genomes, the genome must to be split into fragments of this
size, amplified in bacteria or yeast, before being sequenced with the shotgun

4This section was inspired by the excellent blog post by Matthew Schechter, ”The history of
metagenomics: An incomplete summary,” merenlab.org

5It is worth noting the progress in sequencing technology. DNA fragments of 40kpb and
longer can be sequenced today as a single molecule using a long-read sequencer (Dijk et al.,
2018)

https://merenlab.org/2020/07/27/history-of-metagenomics/
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Origin of the term metagenome

The term metagenome was first used by Handelsman et al. in their work
about the soil metagenome (Handelsman et al., 1998). They did not use
sequencing but rather extracted long DNA fragments from the soil and
cloned them into E. coli cells. Testing this E. coli library for new natural
products accelerated the search and identification of biosynthetic gene
clusters. As theDNA fragments did not come from specificmicrobes, Han-
delsman et al. introduced the termmetagenome to describe the ensemble
of genomes and biosynthetic machinery of the soil microflora. The term
is sometimes used as a synonym formicrobiome, as both describe the col-
lection of all microbes in an environment.

approach. This hierarchical shotgun strategy was used for most of the genomes
sequenced in the context of the human genome project.

The team of Craig Venter leveraged shotgun metagenomics to assemble whole
genomes. They sequenced the first bacterial genome in 1995 (Haemophilus In-
fluenzae, 1.8Mbp, Fleischmann et al., 1995). They proposed to usewhole-genome
shotgun sequencing for the human genome (J. Craig Venter, Smith, et al., 1996),
but the proposition was not received. There was still doubt if the shotgun
approach can scale to large genomes of eukaryotes with many repetitive se-
quences (J Craig Venter, 2006). The teamof Craig venter sequenced the genome
of Drosophila (Myers et al., 2000) and finally Homo sapiens (J. Craig Venter,
Adams, et al., 2001) as part of a private initiative 6.

Shotgun meta-genomics

After having sequenced the human genome, Craig Venter went on to sequence
themarinemetagenome. The goal was to sequence samples from all the world’s
oceans, but already for the first samples, the Caldera assembler failed (J. Craig
Venter, Remington, et al., 2004). Only a quarter of the reads could be assembled
into well-covered contigs. The diversity of the microbes made it too difficult to
assemble their genomes. If genomes cannot be assembled, it is still possible to

6To be precise, the efforts of the Human genome project and Celera Genomics achieved the
assembly of about 90% of the whole human genome. Only now the remaining gaps were filled
(Nurk, Koren, et al., 2021)
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perform analyses about the functional and taxonomic composition of a meta-
genome based on genes predicted on the contigs or the reads themselves. In
this way, J. Craig Venter, Remington, et al. estimated that they sequenced DNA
from almost 2000 different species, including 148 types of bacteria never seen
before.

Such gene‐centric metagenome analyses became wildly popular at the begin-
ning of large-scale metagenome studies (McMahon, 2015). Significant collabo-
rative effortswere undertaken to construct reference gene-catalogs for specific
microbiomes, for example, the mentioned Global Ocean Sampling Expedition,
the Human microbiome project, and the MetaHIT (METAgenomics of the Hu-
man Intestinal Tract) project (Yooseph et al., 2007; Turnbaugh et al., 2007; Qin
et al., 2010). These efforts uncovered millions of new genes for different meta-
genomes. Even if the fraction of annotatable genes is small, these catalogs en-
abled the comparative analysis of metagenomes based on function and even the
inference of metabolic pathways (Tringe, 2005). Metagenomic tools developed
during this time, e.g., HUMAnN2 (Abubucker et al., 2012) are still prevalent.

However, gene‐centric annotations approaches have several limitations be-
cause they treat the whole microbiome as one entity: First, the quantification
of functions is based on reads mapping to genes that are even more subject
to variation than genomes, e.g., through ongoing genome duplication or gene
multiplicity. Second, the taxonomic and functional annotation are not linked.
It is not easy to see which species is responsible for which function. There-
fore, it becomes difficult to relate taxonomic changes to changes in functional
abundances. Third, metabolic pathways are reconstructed for the whole meta-
genome instead of individual genomes, obfuscating any metabolic mutualism
or competition between different species by considering them as the same
entity.

Genes are expressed within cells, not in a homogenized cytoplasmic
soup. It matters a lot whether a complete metabolic pathway is found
in a genome versus distributed across multiple distinct genomes.

—McMahon, 2015

A genome-centered approach tometagenomic data can overcome these limita-
tions. In the following section, we will look at the technological and algorithmic
advancements that made this change possible.
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1.2 Genome-resolved metagenomics

1.2.1 Metagenome assembly

The assembly of metagenomes is still a challenge today. One of the significant
advances in terms of algorithms was the introduction of graph-based assem-
blers. Before, assembly algorithms compared each read to each other, succes-
sively merging reads with the most significant overlap to creating a consensus
sequence. Overlap-layout consensus (OLC) algorithms have difficulty finding
a consensus if the reads have multiple overlaps due to repeated regions. Nor
do they scale well to large sets of reads, as each read has to be compared to
each other, making the computational burden increase exponentially with the
number of reads.

Children like puzzles, and they usually assemble them by trying all pos-
sible pairs of pieces and putting together pieces that match. Biologists
assemble genomes in a surprisingly similar way, the main difference
being that the number of pieces is more significant.

— Pevzner et al., 2001

Myers, who helped assemble the Drosophila and the human genome, saw the
limitations of their assembly algorithm and proposed a new idea. The idea is
to use a (de Bruijn) graph to represent the sequenced reads and framed the
assembly as a problem to find the optimal path in this graph. The sequenced
reads are split into short sub-sequences of a fixed size, the so-called 𝑘-mers.
These represent the graph’s nodes. Two 𝑘-mers are connected in the chart if
they are adjacent in at least one sequencing read. The reads represent short
paths connecting this node. The assembly consists of applying several graph-
simplification algorithms to find paths that are as long as possible. In theory, the
optimal path can be found in linear-time (Pevzner et al., 2001), but because the
coverage is never homogenous, it is rarely possible to find a complete genome.
The choice of the 𝑘-mer-length is crucial: short 𝑘-mers create awell-connected
graph, with the risk of having too many overlaps that make it challenging to re-
solve repeats. Long 𝑘-mers can better resolve repeats but decrease the chance
of overlaps between the sequencing reads. Algorithms based on the de Bruijn
graph reduce the computational costs drastically because the chart stores the
sequencing data more efficiently. The graph’s memory requirements can be
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even more reduced by removing sequencing errors before or during the build-
ing of the graph. Sequencing errors introduce false 𝑘-mer-nodes and lead to
spurious branches. Graph-based assembly algorithms became popular after
the human genome was sequenced, and (next-generation sequencing) came
available that allows much cheaper and parallelized sequencing albeit with a
limitation of the read-length.

Even though prokaryote genomes are relatively simple to assemble, the assem-
bly of a complexmixture thereof, ametagenome, is challenging. Overlapswithin
a genome and between different genomes are formed at regions that are similar,
such as the conserved genes for the ribosome. Many bacterial species in a mi-
crobiome are represented by amixture of strains with a conserved core genome
and additional variable regions (Kashtan et al., 2014). The coverage over the dif-
ferent genomes is very uneven due to the overlaps, amplification bias, and the
difference in the abundance of the organisms in the original sample. It can be-
come challenging to distinguish low-abundant strain variation from sequencing
errors.

Modern metagenome assemblers such as Megahit and metaSPAdes (D. Li et al.,
2015; Nurk, Meleshko, et al., 2017) deal with these challenges by different mod-
ifications to a standard-genome assembly algorithm. Both use multiple graphs
with different 𝑘-mer- lengths to benefit from the advantages of both small and
large 𝑘-mers. Smal 𝑘-mers allow assembling better regions with low coverage,
whereas longer 𝑘-mers allow disentangling repeats and inter-genome overlaps.
The graph for one 𝑘-mer-length is used to build the next larger 𝑘-mer-graph.
The tools fall on different sides of the tradeoff between correcting sequencing
errors and overwriting strain variation. Megahit is sensitive to strain variation.
There are no specific error-correction steps other than removing 𝑘-mers be-
low a threshold from the graph. Discarded 𝑘-mers can be recovered if they fit
in the assembly graph. metaSPAdes, on the other hand, corrects the sequencing
reads before the graph generation. The tool uses stringent graph simplification
algorithms that ignore strain-specific features of rare strains to reconstruct a
consensus backbone of a strain mixture. Interestingly, the aglomerating ap-
proach of metaSPAdes gives the best results as an independent benchmark of
metagenome assemblers from 2017 (Vollmers et al., 2017). The tool produces
the longest scaffolds, even from highly complex metagenomes. metaSPAdes is
often used for large-scale metagenome assembly projects unless the memory
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requirements are too high (Pasolli et al., 2019; Almeida et al., 2019; Nayfach et al.,
2019). In which case, often, Megahit is used instead. Megahit is the most effi-
cient tool, according to the same benchmark, and often produces the largest
assembly even if it is more fractionized (Vollmers et al., 2017). Both assemblers
rarely produce complete genomes, and therefore, it is necessary to cluster the
resulting contigs into bins that could be thought of as genomes, a process called
binning.

1.2.2 Recovering genomes from metagenomes

The beginning of binning

Even before performant graph-based assemblers were available, researchers
attempted to recover genomes from metagenomes. Tyson et al., were the first
that succeeded. Their landmark paper (Tyson et al., 2004), focuses on a micro-
biome with relatively low diversity from an acid mine drainage. The microbes
living in these harsh conditions (pH 0.83) oxidize iron and exacerbate the pol-
lution of the mine outflows. The microbiome that consists mainly of different
bacterial species grows as a biofilm. To understand the metabolic interaction
between the different uncultured species, Tyson et al. attempted to reconstruct
genomes directly from the metagenome sample.

To do so, they performed an unprecedentedly deep metagenomic sequencing
(76.2 Mbp) that should cover the genomes up to 10 fold. The modified a overlap-
based assembly algorithm prioritizes continuity of the assembly over the accu-
racy, which is in line with the modifications in modern algorithms as described
above. The shift had its effect; over 85 % of the reads could be assembled into
scaffolds longer than 2 kbp. Tyson et al. calculated the average GC-content
(fraction of guanine + cytosine) and coverage for each contig. When they looked
at their distribution, four peaks emerged (Fig. 1.2 on the next page). Could this
be four different genomes? If so, are they complete? The contigs of two clus-
ters showed similarity to an earlier sequenced genome of an archaeon, and the
sum of the contig’s length matched the genome size of the sequenced genome.
The two other clusters contained a 16S gene corresponding to the dominant
bacterial genus Leptospirillum, which had no sequenced genome for the entire
phylum.
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Fig. 1.2 Distribution ofGCcontent versus local read depth (coverage)
of a deeply sequenced metagenome from an acid mine drainage.
Four peaks are visible at the intersections of the grid lines. Source:
(Tyson et al., 2004)

How would one show the completeness of a genome without related reference
genomes? Tyson et al. did so by verifying if all genes for the essential transfer
RNA synthetases were present in the cluster. Based on this estimation, one
Leptospirillum species was complete, and one nearly. Interestingly, the lower
abundant species were the only species to fix nitrogen and supplied it to the
community. This result could not be obtained other than culturing or genome-
resolved metagenomics. Also, because they used such a deep sequencing, they
could investigate the strain distribution. The Leptospirillum species existed as
a unique strain, whereas the archaea species was a mosaic of free recombining
cells originating from three ancestral strains. This initial success of recovering
two nearly complete genomes laid the stepping stone for further studies ( See
also Fig. 6.2 on page 108).

Tyson et al. used simple thresholds to define bins, which they showed to be rea-
sonable approximations of genomes. Even though today, much more sophisti-
cated algorithms are used to segregate contigs into genomes, the term binning
stuck. Most algorithms work under the paradigm that one contig belongs only
to one bin.

How do we bin contigs into genomes?

Since the first genomes were recovered frommetagenomes, a plethora of algo-
rithms was developed for metagenomic binning. Some rely on visual inspection
and manual curation (Zhu, Dupont, et al., 2018; Eren, Esen, et al., 2015), while
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others are fully automated. The explosion of developed algorithms and the ad-
vancement of metagenome assembly made it difficult to compare the differ-
ent tools on even ground. The critical assessment of metagenome interpreta-
tion (CAMI) challenge was initiated to benchmark various metagenomic tools
on newly sequenced and real datasets, but the benchmark could not keep up
with the development of new algorithms.

The binning algorithms becomemore andmore sophisticated, but the idea stays
the same: Grouping contigs into genomes based on two sets of features, se-
quence features, and abundance features: Many ways exist to extract features
from the DNA sequence of a contig (or a read). It is possible to predict genes
and map them or their translated protein to a database to find similarities with
existing genes. Genes that are generally found only once in a genome can be
used to constrain the clustering or estimate the number of genomes present in
the sample (See more in sec. 1.2.3 and 6.4.1).

More directly, the raw sequence composition, measured as frequencies of 𝑘-
mers, can be used as features. Even before sequencing was available, it was
recognized that the frequencies of the four DNA bases (A, T, G, C) and their
combination follows non-random patterns (Josse et al., 1961). It was shown
that the sequence composition is more similar between genomes of the same
taxon than from a different (Nussinov, 1980) and that it can be used to classify
genomes or contigs into a taxonomy (Sandberg et al., 2001). The GC-content is
the sumof guanine (G) and cytosine (C) frequencies (𝑘 = 1). While the specificity
of the genome signature increases with the length, the number of possibilities
increases exponentially with 𝑘. Today, most of the time, frequencies of tetra-
nucleotides, 𝑘-mers of size 4, were used to measure the sequence composition.
The tetra-nucleotide frequency captures more of the particularities of the con-
tig sequences as they incorporate the GC-content and codon-bias.

The feature of the abundance is, most of the time, the average coverage of a con-
tig. However, instead of using only the coverage information from one sample,
contigs can be clustered by the abundance from different samples. An idea that
was first developed by Albertsen et al., who used two different extraction pro-
tocols of the samemicrobiome sample to get two different abundance values of
the same strains. Using this method, the researchers could recover 31 genomes
from a bioreactor, including from low abundant species.
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Binning based on differential abundance

Binning based on differential abundance requires one assembly with cov-
erage information from different samples. To achieve this, usually, all
samples are co-assembled, and the reads from all samples are mapped to
the same assembly. Because co-assembly combines the data from multi-
ple samples, it allows the assembly of contigs from more low-abundant
genomes. However, co-assembly also cumulates the (strain-)diversity
from numerous samples and multiplies the challenges associated with
metagenome assembly. It is also possible to assemble samples separately
and merge the assemblies, which reduces the computational burden for
the co-assembly. However, it looses also the advantage of assembling low-
abundant genomes, and it still contains inter-sample chimeras.
Alternatively, one canmap the reads from each sample to all assemblies of
a project. In this way, one keeps the advantages of both single-sample as-
sembly and binning based on differential abundance. However, the down-
side of cross-mapping is that it requires 𝑁2

𝑠𝑎𝑚𝑝𝑙𝑒𝑠 mappings and is there-
fore not scalable.
An interesting new approach, implemented by Nissen et al., is based on
single-sample assembly but co-binning. Each sample is assembled sepa-
rately, and the assemblies are concatenated. As in co-assembly, the reads
from all samples aremapped to the same assembly. Because the combined
assembly contains multiple times the same genome, the multiple map-
ping sites of reads must be considered. Binning is performed using a deep
variational autoencoder, which autonomously learns how to weight the
sequence and the abundance feature. After clustering, the contigs from
each sample are separated to create sample-specific bins for each cluster.
This method pays much attention to strain variation by assembling sam-
ples separately and splitting the clusters in sample-specific bins. It allows
disentangling strains up to 99.5%, according to the authors.

This idea of using the differential abundance of contigs in multiple samples
was leveraged by Nielsen et al. from the MetaHIT consortium to produce the
first binning of a complex microbiome (Nielsen et al., 2014). As the metagenome
assemblers were still not at their best, the researchers based their analysis
on genes quantified in 396 human gut metagenome samples. The correlation
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of these abundance values allowed them to segregate the genes into clusters.
Some of these clusters had the size of bacterial genomes, whereas others could
be associated with phages. As the method is based on genes, the resulting
clusters do not contain the genome sequence, but the segregation of the genes
can assist assembly. By re-assembling all the reads associated with a specific
cluster, the authors could reconstruct 360 genomes.

The year after, Christopher T. Brown et al. published eight complete and 789
draft genomes from a group of tiny bacteria (< 0.2 µm). These bacteria, which
were only known by environmental sequencing, have shrunken genomes and
lack many genes and pathways, thought to be essential (Christopher T. Brown
et al., 2015). Their 16S gene is different from known bacteria, making more
than half of these organisms undetectable by 16S sequencing. They were first
thought to represent multiple phyla and are called the candidate phylum radi-
ation (CPR). However, subsequent phylogenetic analysis showed that they are
part of the phylum Patescibacteria (Donovan H Parks et al., 2018). This example
shows again how genome-resolved metagenomics allows the studying of pre-
viously undetected organisms.

1.2.3 What does it mean to be complete?

Metagenome-assembled genomes, short MAGs, are only a bunch of contigs
clustered together. Do they correspond to real genomes? Are they as good
as genome sequencing from isolates? Comparing a MAG to a close reference
genome can help to validate the binning. If the MAG does not have a related
reference genome, the MAG quality is commonly estimated based on marker
genes. Like Tyson et al., one can search for genes found in practically all mi-
crobial genomes, such as t- and rRNA genes and their associated proteins. The
completeness of a genome is estimated as the fraction of marker genes present
divided by their expected number (See equation below). Similarly, marker genes
present only once in practically all microbial genes are used to estimate con-
tamination of MAGs.

Completeness = present
expected marker genes
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Contamination = duplicated
expected marker genes

In practice, the same set of genes is used to estimate completeness and con-
tamination, even if not required. The set of marker genes can be adapted to
the novelty of a MAG. For example, a MAG is first assessed based on univer-
sal marker genes and then placed in a phylogenetic tree. This approximative
taxonomy is used to identify the closest clade for which a marker gene set is
available, and the MAGs quality is assessed with more detail. There are approx-
imately 50 genes that are single-copy and present in all bacteria and archaea.
Still, over 100 phylum-specific marker genes can be defined, and even more for
lower taxonomic levels.

The tool checkM was proposed first to perform this phylogenetic-specific qual-
ity assessment of prokaryote genomes. But its database and phylogenetic tree
were not updated since 2015. During my Ph.D., I contributed to adapt BUSCO
(Manni et al., 2021) to perform such analyses on microbial genomes. BUSCO is a
more scalable approach developed initially for animal genomes. It is based on
the marker genes of the regularly updated OrthoDB (Zdobnov et al., 2021) and
assesses the quality not only of prokaryotes but also eukaryotes.

Commonly the completeness and contamination estimates are combined in a
single quality score with five times more weight on the contamination (See
equation below). Genomes below a quality score of 50% are regarded as low-
quality, and genomes with >90% are counted as high-quality genomes. The
Minimum Information about a metagenome-assembled genome (MIMAG) crite-
ria additional expect the rRNA genes and at least 18 tRNAs (Bowers et al., 2017).
However, these genes are complicated to assemble from metagenomes and are
usually not counted as a requirement for high quality or near-complete MAG
(Almeida et al., 2019; Gruber-Vodicka et al., 2020).

Quality score = Completeness− 5 × Contamination

Most genomes recovered from metagenomes do not reach the maximal quality
score. There can be biological reasons for this, as it is the case for the tiny bacte-
ria of the candidate phylum radiation (sec. 1.2.2). These bacteria systematically
miss subsets of themarker genes present in 90%of all bacteria (Eren&Delmont,
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2017). However, this group is only the exception that confirms the rule. Most
MAGs are not complete. Even MAGs that are of high quality might contain as-
sembly errors, strain chimeras and are oftenmuchmore fractionized (measured
by the 𝑁50-metric) than isolated genomes (Chen et al., 2020). The isolation of
a species followed by sequencing its genome is the optimal approach, even if
it does not guarantee a complete genome or genome without contamination.
As described in chapter 4, we found low-quality isolated genomes that are part
of official culture databases. Some had even contamination of 100 %, meaning
they consist of an isolate of two strains.

1.2.4 Who is doing what?

Regardless if a genome is assembled from an isolate or recovered from a meta-
genome, the bare DNA sequence is only an intermediate step. It is more in-
teresting to annotate a genome with its taxonomy and the functional potential
of its genes. The proteins predicted from identified genes are mapped to a
database of functions to annotate them. Proteins can have wildly divergent se-
quences and still exhibit the same function. To optimize speed and sensitivity,
often hiddenMarkov models (HMMs) are used to annotate genes with functions.
The HMMs are constructed from the alignment of proteins with the same func-
tion and encode all of the similarities and variabilities of the proteins in a simple
numerical matrix.

An optional but beneficial step for functional annotation is integrating the pro-
tein annotations into a higher organization order. We often use the term path-
way to describe a collection of functions that represent a well-characterized
segment of the molecular machinery of a cell. For instance, a metabolic path-
way describes a group of enzymes used to produce a metabolite or its degra-
dation. Other pathways may be implicated in cell-to-cell communication (quo-
rum sensing) or the adaptation to an environment, for example, sporulation or
biofilm formation. Some pathways are encoded by physically clustered groups
of genes, for example, biosynthetic gene clusters (BGCs), genes that together
encode a biosynthetic pathway (Medema et al., 2015) or operons, commonly reg-
ulated adjacent genes. Nonetheless, in general, pathways are only human-made
schematic representations without genetic correspondence.

Themost used database for functional annotation is KEGG (Kyoto Encyclopedia
of Genes and Genomes, Kanehisa & Goto, 2000). The organization of the KEGG
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database is based on KEGG-orthologs (KOs), curated groups of genes that have
the same function. Metabolic KOs correspond most of the time to an enzyme
from the Enzyme Commission (EC number). KOs are organized into modules
(segments of pathways) and large overarching pathway maps. Analogous path-
ways can also be found in the MetaCyc database (Caspi et al., 2016).

The crucial step of the pathway integration is deciding if a set of genes are suf-
ficient to mark the presence of a pathway in a genome or not. The challenge
arises because functions can be part of multiple pathways and that various ver-
sions of pathways often exist. Therefore the presence of one or two functions
does not mean that a pathway is present. On the other hand, a missing anno-
tation might be a false negative, especially in MAGs, which are rarely complete.
To infer the presence of pathways, it is necessary to model them to a certain
extent. It is even possible to create metabolic models for the whole organism.
These can then be used for inferring metabolic symbiosis between members in
a microbiome (Machado, Andrejev, et al., 2018; Belcour et al., 2020; Machado,
Maistrenko, et al., 2021). Nevertheless, less than half of genes can be annotated
for most species. Even less can be integrated into pathways (Richardson et al.,
2019), which lets substantial room for identifying new gene functions through
metagenomic studies.

Taxonomic annotation of Genomes

Taxonomic annotation is also based on genes. Usually, conserver marker
genes are predicted and aligned to a reference taxonomy, allowing to place
the genome into a phylogenetic tree. On the other hand, for species attribu-
tion, a more precise method is necessary. Traditionally bacterial species were
defined based on phenotypic characterization, for example, shape or enzymatic
potential, in addition to a marker gene analysis. Species delineation based on
thewhole genomewere realized even before they could be sequenced (Brenner,
1973). The genomic DNA of two species was mixed and allowed to hybridize.
The strength of association between the two genomes is used as a measure
for their similarity. With the possibility to sequence whole genomes easily, the
calculation of the average nucleotide identity (ANI) between genomes replaced
the hybridization experiments. A threshold of 95% ANI was found to recapitu-
late the majority of existing species boundaries (Konstantinidis & Tiedje, 2005;
Jain et al., 2018).
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Calculation of the ANI requires pairwise alignment of genomes, which scales
quadratically with the number of genomes. To solve this computational prob-
lem, efficient tools must be used to deal with the flood of genomes recovered
from metagenomes. One essential advancement is the implementation of a
MinHash algorithm for genome comparison. So, allows the tool mash and other
implementations, the fast comparisons of millions of genomes in low memory
(Ondov et al., 2016).

Still, the best algorithms for taxonomic annotation are useless without a ro-
bust taxonomy, which was a critical bottleneck until recently. “Development of
a robust bacterial taxonomy has been hindered by an inability to obtain most
bacteria in pure culture and, to a lesser extent, by the historical use of pheno-
types to guide classification. ” (Donovan H Parks et al., 2018). Philip Hugen-
holtz, which was already a forerunner in systematizing prokaryote taxonomy
based on the 16S gene (McDonald et al., 2012), developed the genome taxonomy
database (GTDB), that establishes a robust genome-based taxonomy (Donovan
H Parks et al., 2018; Donovan H. Parks, Chuvochina, et al., 2020). It includes all
cultured genomes but also many genomes recovered from metagenomes. Not
very surprising, most species in GTDB come only frommetagenome-assembled
genomes7.

1.3 Goal of the thesis

The goal of my P.h.D thesis is to enable the analysis of the mouse gut meta-
genome.

Mice are the most used model organism to study the impact of the microbiome
on its host. Several factors make the mouse a good model: The availability of
samples from different parts of the gastrointestinal tract, treatment options,
controlled diet, and housing environment, defined genetic background, and
ethical considerations. However, the mouse gut microbiota has been poorly
characterized, and only a fraction of the diversity observed by 16S rDNA se-
quencing is represented by genomes in public databases (Lagkouvardos et al.,
2016). The majority of mouse microbiome studies are performed by sequenc-
ing the variable regions of the 16S gene. While this technique has allowed a
general overview of the microbiota down to the genus level, it is not suited for

7gtdb.ecogenomic.org – Stats

https://gtdb.ecogenomic.org/
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identifying species for most organisms (Johnson et al., 2019). Different species
from the same genus and even subspecies from the same species can exert dis-
tinct functions (Costea et al., 2017), stressing the importance of annotating the
microbiome content at the lowest taxonomic level.

Shotgun metagenomics allows studying the full microbiota diversity of an en-
vironment, including uncultured microorganisms, viruses, and plasmids. How-
ever, its interpretation is limited by the availability of reference genomes. There
is a lack of reference genomes from the members of the mouse microbiome, as
is apparent from the low mapping rate (Fig. 1.3 on the next page). We could
classify less than 20% using commonly used workflows to analyze the (human)
metagenome. Even with a mouse-specific gene-catalog (Xiao et al., 2015), we
could annotate about half of the reads, which corresponds to what the authors
of the gene catalog have stated. It is important to note that while the gene-
catalog is an essential reference for genes and functions, it has only a limited
taxonomic annotation and does not contain genomes, which hinders the linking
of function to species.

To solve the lack of reference genomes for the mouse microbiome, I turned to
algorithms that make it possible to reconstruct genomes from metagenomes.
I implemented these algorithms in an efficient pipeline that allows users to go
from the raw reads to reconstructed and annotated genomes. In chapter 2,
I describe the development of this pipeline called metagenome-atlas. Using
this pipeline, we were able to annotate the functional potential of the mouse
gut microbiome and predict changes in metabolites, which were confirmed
by targeted metabolomics and have the potential to improve osteoporosis
(ch. 3).

Motivated by the success of analyzing our data with metagenome-atlas, we won-
dered if we could improve the collection of genomes for the mouse gut, both
by recovering more and better MAGs. We, therefore, processed all publicly
available metagenomes of the mouse gut with metagenome-atlas. The result-
ing MAGs form the comprehensive mouse gut metagenome catalog (CMGM), de-
scribed in chapter 4. We demonstrated how reconstructed genomes could be
used to analyze metagenomes of mice and relate them to the host’s health in
section 4.2.

Finally, I describe in chapter 5 what I have learned about the statistical analysis
of metagenome data and why it is crucial to take the compositional nature of
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Fig. 1.3 Benchmark of metagenomics tools to classify reads from a
mouse gutmetagenome at the beginning ofmy Ph.D.: The faction of
reads classified by HUMAnN2 (Franzosa et al., 2018), Kraken2 (Der-
rick E. Wood et al., 2019) with a database of all bacteria and virus
genomes from RefSeq or the fraction or reds mapping to the mouse
gene catalog (Xiao et al., 2015). Reads were mapped using bbmap,
with a minimum identity of 0.9. To see the improvement achieved,
see Ch. 4 Fig. 3B.
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microbiome data into account, especially for microbiomes that have compre-
hensive catalogs available.
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Abstract

Background: Metagenomics studies provide valuable insight into the composition
and function of microbial populations from diverse environments; however, the data
processing pipelines that rely on mapping reads to gene catalogs or genome
databases for cultured strains yield results that underrepresent the genes and
functional potential of uncultured microbes. Recent improvements in sequence
assembly methods have eased the reliance on genome databases, thereby allowing
the recovery of genomes from uncultured microbes. However, configuring these
tools, linking them with advanced binning and annotation tools, and maintaining
provenance of the processing continues to be challenging for researchers.

Results: Here we present ATLAS, a software package for customizable data processing
from raw sequence reads to functional and taxonomic annotations using state-of-the-
art tools to assemble, annotate, quantify, and bin metagenome data. Abundance
estimates at genome resolution are provided for each sample in a dataset. ATLAS is
written in Python and the workflow implemented in Snakemake; it operates in a Linux
environment, and is compatible with Python 3.5+ and Anaconda 3+ versions. The
source code for ATLAS is freely available, distributed under a BSD-3 license.

Conclusions: ATLAS provides a user-friendly, modular and customizable Snakemake
workflow for metagenome data processing; it is easily installable with conda and
maintained as open-source on GitHub at https://github.com/metagenome-atlas/atlas.

Keywords: Metagenomics, Analysis workflow, Annotation, Metagenome-assembled
genomes

Background
Metagenomics has transformed microbial ecology studies with the ability to generate

genome sequence information from environmental samples, yielding valuable insight

into the composition and functional potential of natural microbial populations from di-

verse environments [1, 2]. Despite the prevalence of metagenome data, there are few

broadly accepted standard methods, either for the generation of that data [3–5] or for

its processing [6, 7]. In particular, processing metagenome data in an efficient and
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reproducible manner is challenging because it requires implementation of several dis-

tinct tools, each designed for a specific task.

The most direct and frequently used way to analyze metagenome data is to map the se-

quence reads to reference genomes, when a suitable genome database from cultivated mi-

crobes is available (e.g. Humann2 [8]). However, these methods do not capture

uncultivated species; studies using single-copy phylogenetic marker genes have improved

estimates of species richness in metagenome data by expanding the representation of un-

cultivated species [9]. To truly characterize a natural microbial community and examine

its functional potential, assembly-based metagenome analyses are needed. This has been

demonstrated by recent studies that have recovered thousands of new genomes using co-

abundance patterns among samples to bin contigs into clusters [10–13].

A number of assembly-based metagenome pipelines have been developed, each pro-

viding a subset of the required tools needed to carry out a complete analysis process

from raw data to annotated genomes [14–17]. For example, MOCAT2 [16] relies on

gene catalogs to evaluate the functional potential of the metagenome as a whole, but

without directly relating functions to individual microbes. Metagenome processing

pipelines commonly default to co-assembly of the samples rather than assembly of indi-

vidual samples, resulting in more fragmented assemblies [18]. Only some applications

(e.g., IMP [17]) permit the co-assembly of metagenomes and metatranscriptomes for

individual samples. Furthermore, the configuration and technical constraints to user

control often limit the adoption of these tools in the research community.

Here we present an entirely new version of ATLAS [19], an assembly-based pipeline

for the recovery of genes and genomes from metagenomes, that produces annotated

and quantified genomes from multiple samples in one run with as little as three com-

mands. The pipeline integrates state-of-the art tools for quality control, assembly and

binning. The installation of ATLAS is automated: it depends only on the availability of

Anaconda and installs all dependencies and databases on the fly. The internal use of

Snakemake [20] allows efficient and automated deployment on a computing cluster.

Implementation

The ATLAS framework organizes sequence data processing tools into four distinct ana-

lysis modules: [1] quality control, [2] assembly, [3] genome binning and [4] annotation

(Fig. 1); each module can be run independently, or all four modules combined in a

complete analysis workflow. ATLAS is implemented in Python and uses the Snakemake

[20] workflow manager for extensive control of external tools, including versioning of

configurations and environments, provenance capabilities, and scalability on high-

performance computing clusters. ATLAS uses Anaconda [21] to simplify initial deploy-

ment and environment set-up, and dependencies are handled by Bioconda [22] at run-

time. Complete usage and user options are outlined in the ATLAS documentation

(https://metagenome-atlas.rtfd.io).

Quality control

Quality control of raw sequence data, in the form of single- or paired-end FASTQ files,

is performed using utilities in the BBTools suite [23]. Specifically, clumpify is used re-

move PCR duplicates and compress the raw data files, followed by BBduk to remove

Kieser et al. BMC Bioinformatics          (2020) 21:257 Page 2 of 8
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known adapters, trim and filter reads based on their quality and length (respectively), and

error-correct overlapping paired-end reads where applicable. BBSplit is used to remove

contaminating reads using reference sequences: PhiX is provided as a default or can be re-

placed by user-specified fasta-format sequences. To optimize data use, reads that lose

their mate during these steps are seamlessly integrated into the later steps of the pipeline.

Assembly

Prior to metagenome assembly, ATLAS uses additional BBTools utilities [23] to per-

form an efficient error correction based on k-mer coverage (Tadpole) and paired-end

read merging (bbmerge). If paired-end reads do not overlap, bbmerge can extend them

using read-derived overlapping k-mers. ATLAS uses metaSPAdes [24] or MEGAHIT

Fig. 1 The ATLAS workflow. This high-level overview of the protocol captures the primary goal of the sub-
commands that can be executed by the workflow. Individual modules can be accessed via the command
line or the entire protocol can be run starting from raw sequence data in the form of single- or paired-end
FASTQ files

Kieser et al. BMC Bioinformatics          (2020) 21:257 Page 3 of 8
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[25, 26] for de novo assembly, with the ability to control parameters such as k-mer

lengths and k-mer step size for each assembler, as well as hybrid-assembly of paired

short- and long-read libraries. The quality-controlled reads are mapped to the assem-

bled contigs, and bam files are generated to facilitate downstream calculations that may

be of interest (e.g., calculating contig coverage). The assembled contigs shorter than a

minimal length, or without mapped reads, are filtered out to yield high-quality contigs.

Genome binning

The prediction of metagenome-assembled genomes (MAGs) allows organism-specific

analyses of metagenome datasets. In ATLAS, two binning methods are implemented

(Fig. 1): metabat2 [27] and maxbin2 [28]. These methods use tetra-nucleotide frequen-

cies, differential abundance, and/or the presence of marker genes as criteria. ATLAS

supports assembly and binning for each sample individually, which produces more con-

tinuous genomes than co-assembly [29]. Definition of which samples are likely to con-

tain the same bacterial species, via a group attribute in the Snakemake configuration

file, supports binning based on co-abundance patterns across samples. Reads from all

of the samples defined in a group are then aligned to the individual sample assemblies,

to obtain the co-abundance patterns needed for efficient binning. The bins produced

by the different binning tools can be combined using the dereplicate, aggregate and

score tool (DAS Tool, [30]), to yield MAGs for each sample. Finally, the completeness

and contamination of each MAG are assessed using CheckM [31].

Because the same genome may be identified in multiple samples, dRep [29] is used to

obtain a non-redundant set of MAGs for the combined dataset by clustering genomes to

a defined average nucleotide identity (ANI, default 0.95) and returning the representative

with the highest dRep score in each cluster. dRep first filters genomes based on genome

size (default > 5000 bp) and quality (default > 50% completeness, < 10% contamination),

then clusters the genomes using Mash [32], followed by MUMmer [33], thereby benefit-

ting from their combined speed (Mash) and accuracy (MUMmer). The abundance of each

genome can then be quantified across samples by mapping the reads to the non-

redundant MAGs and determining the median coverage across each the genome.

Taxonomic and functional annotation

For annotation, ATLAS supports the prediction of open reading frames (ORFs) using

Prodigal [34]. The translated gene products are then clustered using linclust [35] or

mmseqs [36] to generate non-redundant gene and protein catalogs, which are mapped

to the eggNOG catalogue v5 [37, 38]. Robust taxonomic annotation is performed using

the genome taxonomy database tool kit (GTDB-tk, [39]). In addition, phylogenetic trees

are built based on the markers from GTDB and CheckM.

Output

The ATLAS output for each sample includes the quality-controlled reads, assem-

bled contigs, bam files (reads mapped to contigs), and predicted genome bins, to-

gether with summary statistics in an HTML report. The final output includes

results from all samples, including the raw and normalized counts for the set of

non-redundant, high-quality MAGs, with a quality report and their inferred
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taxonomy. From the annotation stage, two fasta files are produced containing the

nucleotide and amino acid sequences of the representative genes in the non-

redundant gene catalog, together with a table containing the gene annotations

summarized at the genome level.

Figure 2 shows examples of ATLAS output in which we analyzed the metagenome

data from paired feces and cecum samples of 8 mice fed ad libitum (PRJNA480387

[40];). On average, the sample data contained 3.5 Gbp, and produced assemblies of 108

Mbp per sample. There were 374 MAGS predicted (completeness > 50% and contamin-

ation < 10%), that formed 69 non-redundant clusters (ANI > 99%; Fig. 2A). These ge-

nomes account for 75% of the reads (Fig. 2B). In general, Bacteroides were more

abundant than Firmicutes, in both cecum and feces (Fig. 2C,D). A principal coordinates

analysis based on the functional annotation revealed two functionally distinct clusters

of Firmicutes (Fig. 2E). Details of these results are provided on GitHub (https://github.

com/metagenome-atlas/supp_data_atlas).

Conclusions
ATLAS is easy to install and provides documented and modular workflows for the ana-

lysis of metagenome data. The internal codes utilized by the workflow are highly

Fig. 2 Example output from the ATLAS workflow. Fecal microbiome data (PRJNA480387 [40];) processed by
ATLAS show: A) the completeness and contamination of dereplicated MAGs, with high-quality genomes
highlighted; B) the fraction of reads mapped to genomes; C) a phylogenetic tree of MAGs with average
abundance in feces and cecum on a centered log2 scale; D) a heatmap of abundance on a centered log2
scale in which MAGs were clustered by phylogenetic distance and samples by Euclidian distance; E) a
principle components analysis of the MAGs based on functional annotation
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configurable using either a configuration file or via the command line. ATLAS provides

a robust bioinformatics framework for high-throughput sequence data, where raw

FASTQ files can be fully processed into annotated tabular files for downstream analysis

and visualization. ATLAS fills a major analysis gap, namely the integration of tools for

quality control, assembly, binning and annotation, in a manner that supports robust

and reproducible analyses. ATLAS provides these analysis tools in a command-line

interface amenable to high-performance computing clusters.

The source code for ATLAS is distributed under a BSD-3 license and is freely avail-

able at https://github.com/metagenome-atlas/atlas, with example data provided for test-

ing. Software documentation is available at https://metagenome-atlas.rtfd.io, which

describes the installation and use of ATLAS including a Docker container (https://hub.

docker.com/r/metagenomeatlas/atlas).

Availability Project name: ATLAS.

Project home page: https://github.com/metagenome-atlas/atlas

Archived version: https://doi.org/10.1101/737528

Operating system(s): Linux.

Programming language: Snakemake/Python.

Other requirements: Miniconda.

License: BSD-3.

Any restrictions to use by non-academics: None.
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This study is the prime example of how metagenome-atlas can be used to ana-
lyze themousemetagenome. My colleague, Claire Chevalier, analyzed the effect
of ambient temperature on the metabolism of mice and the changes in their gut
microbiome. When mice are exposed to warm ambient temperature for a pro-
longed time (34°C, 8weeks), they enlarge the tail and ears, which creates more
surface for heat dissipation. The warm temperature not only has a remodel-
ing effect on the bone but also on the gut microbiome. The transplantation of
the gut microbiota of warm exposed mice induces similar changes on the bone
of the recipient mice and can prevent osteoporosis. Epidemiological analysis
shows a significant correlation between the incidence of hip fracture and the
average temperature in 60 countries.

In order to identify the mechanism of how the gut microbiome influences the
bone strength of the host, we used metagenomics and predicted the functional
potential of the gut microbiome. Polyamine-synthesis was one of the most sig-
nificant increased pathways in the gut microbiome upon warm exposure (Fig.
7). This prediction was confirmed by targeted metabolomics, and the effect of
polyamine on the host was further corroborated by in vivo supplementation and
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inhibition of their synthesis. The genome-resolved metagenomics not only al-
lowed to identify an important pathway how the gut microbiome influences the
host health, but also to identify the driver species (Fig. 6.1, which corresponds
to Fig S6 in the publication).
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This project was led bymy colleague Claire Chevalier. Likemost other labmem-
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amplicon sequencing and shotgun metagenomics. I analyzed the metagenome
data and implemented a functional prediction specific to this project. Together
with her, we interpreted this data. I also (re-) analyzed the 16S data and made
the corresponding figures. I performed the correlation analysis of the human
epidemiological data.
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SUMMARY

Osteoporosis is themost prevalent metabolic bone disease, characterized by low bonemass andmicroarch-
itectural deterioration. Here, we show that warmth exposure (34�C) protects against ovariectomy-induced
bone loss by increasing trabecular bone volume, connectivity density, and thickness, leading to improved
biomechanical bone strength in adult female, as well as in young male mice. Transplantation of the warm-
adapted microbiota phenocopies the warmth-induced bone effects. Both warmth and warm microbiota
transplantation revert the ovariectomy-induced transcriptomics changes of the tibia and increase periosteal
bone formation. Combinatorial metagenomics/metabolomics analysis shows that warmth enhances bacte-
rial polyamine biosynthesis, resulting in higher total polyamine levels in vivo. Spermine and spermidine sup-
plementation increases bone strength, while inhibiting polyamine biosynthesis in vivo limits the beneficial
warmth effects on the bone. Our data suggest warmth exposure as a potential treatment option for osteopo-
rosis while providing a mechanistic framework for its benefits in bone disease.

INTRODUCTION

External temperature is an environmental parameter that affects

various aspects of physiology and requires constant adaptation

by living organisms to its fluctuations. To dissipate heat, rodents

increase skin vasodilation at specific locations where the sur-

face-to-body ratio is high. They also adapt to increased tempera-

tures partly by enlarging the tail and ear length/surface (Meyer

et al., 2017; Alhilli and Wright, 1983; Ashoub, 1958; Harland,

1960), allowing further heat dissipation. Warmth exposure also

has effects ondevelopment, for example, promoting femur growth

(Romsos et al., 1985; Serrat et al., 2008) and favoring denser

trabecular and cortical microarchitecture (Iwaniec et al., 2016).

Unilateral heatingof the limb fromweaning isassociatedwithelon-

gation of the extremities on the heat-exposed side only (Serrat

et al., 2015), and chondrocyte proliferation in vitro is higher at

warmer incubation temperatures (Serrat et al., 2008; Serrat, 2014).

Osteoporosis is the most prevalent metabolic bone disease,

characterized by low bone mass and microarchitectural deterio-

ration (Sözen et al., 2017), leading to weaker bones and

increased fracture risk. Bone remodeling is enabled by the coor-

dinated action of the two major type of cells present in the bone:

osteoblasts, which are responsible for bone formation and

osteoclasts, which are involved in bone resorption. The most

common type of primary osteoporosis occurs as a result of

post-menopausal estrogen deficiency (Reginster and Burlet,

2006), and as such, it is exceedingly common in aging females

but can also occur in men. Whether heat administration post-

development and during late adulthood in healthy, or during

osteoporotic states, can affect bone health, remodeling, and

physiology is unknown.

The intestinal flora has emerged as an important regulator of

host physiology, including the bone (Li et al., 2019; Hsu and Pa-

cifici, 2018; Jones et al., 2017; Ohlsson and Sjögren, 2015, 2018;

Parvaneh et al., 2014; Sjögren et al., 2012). We (Chevalier et al.,

2015) and others (Ziętak et al., 2016) have previously shown that

the host adaptation to cold is in part mediated by alterations of

the gut microbiota composition. However, it is not clear whether

Cell Metabolism 32, 575–590, October 6, 2020 ª 2020 Elsevier Inc. 575
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elevated environmental temperature can affect the microbiota

composition. It is also not knownwhether such alterations would

have any effect on bone morphology and strength.

In this study, we show that warmth exposure applied at later

stages of development improves bone microarchitecture and

strength during healthy conditions. We further demonstrate

that this phenomenon can be used in pathological conditions,

where it prevents the deleterious effect of estrogen depletion in

a mouse model of osteoporosis. These osteological improve-

ments are mediated by warm temperature-induced alterations

of the gut microbiota composition and are sufficient to prevent

bone loss, indicating an existence of a signaling axis between

warmth exposure and the bone that is mediated by the micro-

biota. In terms of possible translation, we performed human

metadata analysis and found an inverse correlation between

the incidence of osteoporotic hip fractures and external

temperature that is independent of vitamin D and calcium levels.

Mechanistically, through a combinatorial metagenomic, tar-

geted metabolomic, and functional approach, we show that

the warm-adapted microbiota has a higher potency to produce

polyamines; in particular, acetylated spermidine and putrescine.

Polyamine biosynthesis inhibition limits the benefits of warmth

exposure, while polyamine supplementation mimics the effects

of warmth in vivo in the mouse osteoporosis model. Our data

suggest warmth exposure as a potential treatment option for

the prevention of osteoporosis, while providing a mechanistic

understanding of the role of a microbiota-host interaction during

warmth exposure and bone disease.

RESULTS

Warmth Exposure Improves Bone Strength in Adulthood
Aging leads to a decrease in bone strength and mass and alter-

ations in the microarchitecture (Boskey and Coleman, 2010; De-

montiero et al., 2012; Mosekilde, 2000), which can increase the

incidence of fracture. We, therefore, evaluated the effects of

warm temperature exposure on mice after their development,

using females exposed for 8 weeks to 34�C starting at 16 weeks

of age. This treatment led to an increase in the tail length in the

older female mice (Figure S1A), and the increase was even

more pronounced following 34�C exposure for 1 month when

started in 8-week-old male mice (Figure S1B). This was coupled

to higher tail temperature as expected, without changing the

overall body temperature (Figures S1C and S1D). Exposure to

34�C of the older females led to an increase in the trabecular

bone volume (BV) versus total tibia volume ratio (BV/total volume

[TV]), the connectivity density of the tibias (Figures 1A–1F), and in

the BV/TV of the caudal vertebra (Figure 1G), without affecting

the cortical bone of the tibias (Figures 1H–1J), indicating a pos-

itive effect of warmth exposure on the trabecular bone.

These structural changes were also reflected at a biomechan-

ical level. A three-point bending test in the femur highlighted the

improvements in the yield point (Figure 1K) above which me-

chanical force causes permanent damage to the bone structure

and in the ultimate force (Figure 1L) that reflects the general

integrity of the bone. No differences were detected in the elastic

energy, energy to fracture, or the Young’s modulus (Figures 1M–

1O). Exposure to 34�C reduced the food intake by 25% (Fig-

ure S1E), consistent with slowing of the overall metabolism

and reduced activity at elevated temperatures (Kaiyala et al.,

2012) (Figures S1E and S1F). As lowered food intake affects

the bone mass (Devlin et al., 2010; Hamrick et al., 2008) and re-

duces body weight at room temperature (RT) (Fabbiano et al.,

2016), but not during warmth exposure (Figure S1F), we

compared the effects of warmth exposure to a pair-fed set of an-

imals kept at RT. Warmth exposure led to elevated trabecular

BV/TV (Figure S1G) and higher cortical BV and width (Figures

S1H–S1J) compared with the pair-fed controls. This was

coupled to a marked improvement of the biomechanical resis-

tance that was independent of the food intake (Figures S1K–

S1O). In addition, the warmth exposure also led to elongated

femurs in comparison to the pair-fed RT-housed controls (Fig-

ure S1P). These data show that warmth exposure exerts benefi-

cial effects on the biomechanical bone parameters in mice dur-

ing adulthood and that these effects are unrelated to the

decreased food intake.

Warmth Exposure Correlates with Reduced Fracture
Incidence in Humans and Prevents Experimentally
Induced Bone Loss in Mice
We next investigated if the warmth exposure could have protec-

tive effects on bone loss. To address the potential relevance of

the temperature on the osteoporosis-related fractures in hu-

mans, we performed human metadata analysis on the incidence

of hip fractures per capita and country worldwide (Cauley et al.,

2014; Wahl et al., 2012; Balk et al., 2017) and found a positive

correlation between the fractures and the latitude (Figures 2A

and S2A). Conversely, there was a negative correlation between

the average temperature and hip fracture incidence both in

women and in the total population (Figures 2B and S2B). Partial

correlation analysis (with the effect of the vitamin D removed)

showed that the temperature and latitude effect on the hip frac-

ture incidence are independent of vitamin D (Figures S2C–S2G).

Similarly, correcting for the calcium intake did not influence the

effect of the temperature and latitude on the hip fracture inci-

dences (Figures S2H and S2I). Instead, when correcting for tem-

perature, the association between latitude and the hip fracture

was largely eliminated (Figure S2J).

To directly test if warmer temperatures may exert protective

effect on bone loss, we surgically ovariectomized 16-week-old

mice, which is the most commonly used model for primary oste-

oporosis, and exposed them to 34�Cor RT for 8 weeks (Ova34�C
or OvaRT, respectively), using sham-operated mice as controls

(Sham34�C or ShamRT). Warmth exposure lowered the food

intake as expected, and this was unaffected by the oophorec-

tomy (Figure S2K). Strikingly, warmth exposure prevented the

trabecular BV/TV loss caused by ovariectomy (Figure 2C), as as-

sessed by computed tomography (CT) and normalized to body

weight (Figure S2L). This was consistent with the increase in

the trabeculae number, the trabecular thickness, and the con-

nectivity density (Figures 2D–2H) in the Ova34�C mice,

compared with the OvaRT controls. No differences were de-

tected in the trabecular spacing and femur length (Figures 2G

and S2M). The ovariectomy-induced decrease in the cortical

BV and width of tibias was prevented in the Ova34�C mice to

similar levels as the ShamRT controls (Figures 2I–2K). This phe-

nomenon was not restricted to long bones as we found that the

decrease in the BV/TV of the caudal vertebra in the Ova34�C
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mice was ameliorated to the levels seen in the ShamRT controls

(Figure 2L). These structural improvements were accompanied

by a reduced fragility of the bones in the Ova34�C mice, as

shown by the biomechanical measurements during the three-

point bending test (Figures 2M–2Q), as they showed similar

reads for all the mechanical properties as the ShamRT controls,

except for the elastic energy.

Warmth Exposure Alters the Microbiota Composition
Recent evidence suggest an interaction between the gut micro-

biota and bone metabolism (Li et al., 2019; Ohlsson and Sjögren,

2015; Hsu and Pacifici, 2018). To investigate whether warmth

exposure can alter the microbiota composition, we performed

16S ribosomal DNA analysis of microbiota in cecum and feces

from 24-week-old female mice that have been exposed to

34�C for 8 weeks. Among the 892 identified operational taxo-

nomic units (OTUs), 81 were differently abundant (p % 0.05) in

warmth- versus RT-treated animals. Principal component anal-

ysis (PCA) of all the microbiomes showed segregation between

the two groups (Figure 3A). Despite the reduced richness of

the gut flora after warmth exposure, the Shannon diversity was

higher (Figures 3B and 3C), indicating a more even distribution

in abundance of the bacterial species after warmth exposure.

This observation was further supported by the family relative

abundance (Figure 3D), where the predominance of the Muriba-

culaceae family was dampened in the warm-adapted micro-

biota. The hierarchical clustering of the samples associated

with a heatmap confirmed the clustering of the microbiota
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Figure 1. Warmth Exposure Improves Bone Strength during Adulthood

(A–E) Trabecular bonemicroarchitecture of tibias showing BV/TV (A), connectivity density (Conn. Dens) (B), number of trabeculae (Tb. N) (C), trabecular thickness

(Tb.Th.) (D), and trabecular separation (Tb.Sp) (E) of 24-week-old female mice exposed to 34�C for 2 months prior to sacrifice and their RT controls (n = 8 per

group), all normalized to body weight.

(F) Representative reconstruction of trabecular bone used for the calculations in (A)–(F). Scale bar, 100 mm. Each trabecular reconstruction was done by scanning

and compiling 262 sections from the beginning of the growth plate to the midshaft in each mouse using n = 8 per group.

(G and H) Cortical BV (G) andwidth (H) of mice as in (A), measured inmidshaft of the tibias and normalized to body weight. (G) Right: representative reconstruction

(each consisting of 262 sections, n = 8 per group) of trabecular bone used for calculation. Scale bar, 100 mm.

(I) Representative cortical section (from 62 sections per bone of each mouse of n = 8 per group). Scale bar, 0.5 mm.

(J) BV/TV (left), measured in the caudal vertebra (CA2) (normalized to body weight) of mice as in (A).

(K–O) Biomechanical analysis of femur frommice as in (A) using a three-point bending test. The parametersmeasured include the yield point (K), the ultimate force

(L), the elastic energy (M), the energy to fracture (N), and the Young’s modulus (O) and normalized to their respective body weight.

Data are shown as mean ± SD (n = 8 per group). Significance (p value) is calculated using Mann-Whitney t test, *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 2. Warmth Exposure Protects against Osteoporosis

(A and B) Metadata analysis showing age-standardized correlation between hip fracture incidence (per 100,000 inhabitants) in women per country versus the

latitude of the country’s capitals (A) or versus the country’s average day temperature (B).

(C–H) Trabecular bone microarchitecture of tibias in female mice that were ovariectomized, or sham-operated at 16 weeks of age, and then exposed to 34�C for

2 months (Ova34�C or Sham34�C, respectively), or kept at RT (OvaRT or ShamRT). BV/TV (C), the number of trabeculae (Tb. N) (D), the trabecular thickness

(Tb.Th.) (E), the connectivity density (Conn. Dens) (F), and the trabecular separation (Tb.Sp) (G) from themice as in (C) at the end of thewarm exposure, normalized

to their respective body weight. (H) Representative reconstruction (each consisting of 262 sections, n = 8 per group) of trabecular bone used for calculations.

Scale bar, 100 mm.

(I and J) Cortical BV (I) and width (J) of mice as in (C) measured in the midshaft of the tibias and normalized to the body weight.

(legend continued on next page)
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following warmth exposure, as well as the broad change in the

microbial composition (Figure 3E). At a genus level, we observed

a warm microbiota signature associated with an increase of the

genera Turicibacter, Ruminiclostridium_6, Akkermansia, Rhodo-

spirillales, Clostridium_sensus_stricto_1, and Parabacteroides,

and a reduction of GCA.900066575, Butyricicoccus, Peptococ-

caceae, or Ruminiclostridium (Figures 3F and S3A). Curiously,

despite the reduction ofMuribaculum at the genus level, several

of its OTUs were among the most elevated following warmth

exposure, pointing to an extreme variability of the growth

behavior within this genus (Figures 3G and S3B). Akkermansia

muciniphila showed a strong increase in abundance after

warmth exposure. Interestingly, this same species was strongly

suppressed after cold exposure (Chevalier et al., 2015; Ziętak

et al., 2016), suggesting that Akkermansia muciniphila is consis-

tently affected by the environmental temperature.

To confirm the effect of the warm housing temperature in

shaping the microbiota, we performed similar analysis in mice of

different age and sex. Similar to the effect in the older females,

12-week-old male mice that were exposed to 34�C for 4 weeks

showed altered microbiota composition as shown by PCA (Fig-

ure S3C), but without showing differences in the Shannondiversity

or Richness (Figure S3D). The family abundance bar chart analysis

revealed similar changes between the older females and the

younger males despite the difference in the treatment length,

with overall increase in the Akkermansiaceae and reduction of

theMuribaculaceae family (FigureS3E). Similar to themost altered

OTUs in the older females, Muribaculaceae OTU2594, Clostri-

dium_stricto_sensus_1_OTU2703, and Lactobacillus_otu2644

were more abundant (Figure S3F) in the microbiota of the

warmth-exposed male mice than that of the RT controls. While

the estrogen depletion caused changes in gut microbiota popula-

tion (Figures S3G–S3H) (Markle et al., 2013; Cox-York et al., 2015;

Kaliannan et al., 2018), the effects of warmth exposure on the mi-

crobiota composition were maintained after ovariectomy, with an

increase in the Akkermansiaceae and reduction in theMuribacula-

ceae family. To further investigate the particular signature of the

warmth exposure in changing the microbiota, we directly

compared the warm-induced changes in the above three condi-

tions: older female, young male, and ovariectomized mice. By

plotting the PCAs,weobserved a consistent shift in themicrobiota

composition selected by the PC2 (Figure S3H). Additional

comparison of the 3 groups selected for consistent changes

and a p value < 0.05, further supported these observations, and

provided a signature of the warmth exposure on the microbiota

composition with increase ofMuribaculaceae otu2594,Muribacu-

laceae otu2618, Lactobacillus otu2644, Clotridium_stricto_sen-

su_1_otu2703, and Lachnospiraceae otu2806 (Figure S3I).

Accordingly, warmth exposure leads to robust and consistent

changes in the gut microbiota composition that is independent

of age, sex, or hormonal status.

Transplantation of Warm-Adapted Microbiota Prevents
Bone Loss
To uncover whether the microbiota impacts the bone parame-

ters during warmth exposure, we first eliminated the microbiota

using antibiotics. Microbiota depletion abolished the warmth-

induced increase in femur strength in 23-week-old female mice

(Figures S3J–S3N) and limited the warmth-mediated increase

in trabecular BV and connectivity density of the tibia (Figures

S3O–S3S). Similarly, warmth exposure did not alter the cortical

bone in the microbiota-depleted mice (Figures S3T–S3V). To

directly test the importance of the warm-adapted microbiota in

a pathological context, we used mice that were ovariectomized

at 16 weeks of age and recurrently transplanted with fecal

microbiota of either warmth-exposed or RT-kept mice

(OvaTransp34�C or OvaTranspRT; Figure S4A). Both micro-

biota-transplanted groups of mice were maintained at RT to

isolate the microbiota effect. The PCA of the transplanted mice

suggested microbiota similarities to the respective donors (Fig-

ure S4B). These observations were supported by the conserved

microbial signature described earlier, including changes in the

Lactobacillus otu2644 and Muribaculaceae otu2596, which

were maintained in the transplanted groups (Figure S4C).

The recurrent microbiota transplantation did not affect the

body weight gain, nor did it change the food intake (Figures

S4D and S4E). However, tibia measurements before and after

the transplantation showed higher BV in the OvaTransp34�C
than that of the OvaTranspRT mice (Figures 4A–4C and 4E).

The increased tibia BV was associated with greater connectivity

density delta before versus after microbiota transplantation (Fig-

ure 4D) in the OvaTransp34�C compared with the delta in the

OvaTranspRT without affecting the trabecular thickness, trabec-

ulae space and number (Figure S4F), and the cortical BV and

width (Figures 4F–4H). The bone strength was improved at

different levels during the three-point bending test on the femurs

(Figures 4I–4M), collectively indicating that the protective effect

observed during warmth exposure on the bone loss outcome

is in part phenocopied by the warm microbiota transplantation.

We also investigated whether microbiota transplantation

could have an effect in non-pathological conditions, using male

germ-free (GF) mice transplanted with microbiota from male do-

nors that were exposed towarmth for 4weeks, or kept at RT. The

PCA of the microbiota from the transplanted GF mice revealed

differences between the groups (Figures S4G and S4H; data

not shown). Fecal warm microbiota transplantation of the young

maleGFmice led to higher cortical BV andwidth (Figures S4I and

S4J), despite thesemeasurements being done only 20 days after

the transplantation, without affecting the femur length (Fig-

ure S4L). Warm microbiota transplantation in the GF mice led

to a slight improvement in the bone strength parameters

compared with the RT-microbiota-transplanted controls (Fig-

ure S4K). These data show that warm-adapted microbiota

(K) Representative cortical sections from each group (from 62 sections per bone of each mouse of n = 8 per group). Scale bar, 0.5 mm.

(L) Trabecular BV/TV,measured in the caudal vertebra (CA2) (normalized to body weight) of mice as in (C). Right: representative reconstruction (each consisting of

262 sections, n = 8 per group) of a vertebra used for calculation. Scale bar, 100 mm.

(M–Q) Biomechanical analysis of femur from mice as in (C) showing ultimate stress (M), Young’s modulus (N), yield point (O), energy to fracture (P), and elastic

energy (Q), all normalized to the body weight.

Data are shown asmean ± SD (n = 8 per group). Significance (p value) is calculated usingMann-Whitney t test, *p < 0.05; **p < 0.01; ***p < 0.001. ShamRTmice (as

shown in Figure 1) are shadowed in gray.
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Figure 3. Warmth Exposure Changes the Gut Microbiota Composition

(A) PCA of 16S rDNA sequencing of fecal microbiota from 24-week-old female mice exposed for 2 months to 34�C or kept at RT. Each dot represents a fecal

microbiota from one mouse. The analysis is based on the centric log2 ratio (CLR).

(B and C) Estimated richness (B) and Shannon diversity (C) of microbiota samples as in (A).

(D) Bar chart of the relative microbiome abundance at family level from mice as in (A).

(legend continued on next page)
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transplantation improves bone strength and physiology, with the

effect being more pronounced in pathological conditions.

Warmth Exposure and Warm Microbiota Ameliorate the
Ovariectomy-Induced Transcriptional Bone Remodeling
To gain insights into the magnitude andmechanisms of the bone

remodeling, we performed RNA sequencing on tibias from ovari-

ectomized and sham-operated mice exposed to 34�C and their

RT controls, as well as from the ovariectomized microbiota-

transplanted mice. Ovariectomy-induced severe transcriptional

alterations, which were markedly reduced when the ovariecto-

mized mice were kept at 34�C (Figures 5A and 5B). Specifically,

to dissect the effect of warmth on the ovariectomy-induced tran-

scriptional alterations, we selected the deregulated genes (|

log2FC| > 1 in OvaRT versus ShamRT, and log count per million

[CPM] > 0) and compared them to the changes in Ova34�C
versus ShamRT. Strikingly, warmth exposure reduced the ovari-

ectomy-induced transcriptomics changes in 90.5% of the genes

partially or completely (93.2% from the upregulated and 86.4%

from the downregulated) (Figure 5C), demonstrating that warmth

exposure exerts a major protective effect on the transcriptional

bone remodeling induced by estrogen deficiency. Reactome

pathway analysis between ovariectomized mice at RT or at

34�C indicated differences in the collagen biosynthesis and

degradation, associated with extracellular matrix reorganization,

suggesting that warmth exposure leads to alterations in the bone

remodeling pathways at the transcriptional level (Figure 5D).

Comparative analysis suggested overlap between the reac-

tomes of ovariectomized and control non-ovariectomized mice

kept at 34�C when compared with their respective RT controls

(Figures 5I and S5A–S5C). Specifically, out of 21 deregulated

pathways between ShamRT versus 34�C, 20 pathways (95%)

were found altered by warmth exposure in the ovariectomized

mice (OvaRT versus 34�C).
Transplantation of the ovariectomized mice with the warm-

adapted microbiota (OvaTransp34�C) also induced transcrip-

tional alterations (FDR < 0.01 and |log2FC| > 1) in bone when

compared with the RT-microbiota-transplanted controls (Ova-

TranspRT) (Figure 5E). To investigate if thewarm-adaptedmicro-

biota could exert similar effect as the warm exposure on miti-

gating the ovariectomy-induced transcriptional deregulation,

we specifically analyzed the altered genes (shown in Figure 5C)

in the OvaTransp34�C mice compared with the OvaTranspRT

controls. Interestingly, the ovariectomy-induced transcriptional

changes were reduced or reverted in 59% of the total deregu-

lated, and in 94% of the reduced genes (shown in green in Fig-

ure 5F), when the ovariectomized mice were transplanted with

warm microbiota, similar to the direct effect of warmth exposure

(Figures 5F and 5G). In the top 10 deregulated reactome path-

ways of the microbiota-transplanted ovariectomized mice, we

observed a similar pattern to the warmth-exposure-induced

changes (Figure 5H). These data indicate that warmth exposure

and warmmicrobiota transplantation suppress the ovariectomy-

induced transcriptional alterations.

Warmth and Warm Microbiota Enhance Periosteal Bone
Formation
To gain further insights into the mechanisms by which warmth

exposure increases bone strength, we investigated the number

and activity of the cells responsible for the bone remodeling. Dur-

ing homeostasis, the activity of osteoblast and osteoclasts is at

equilibrium. In the context of osteoporosis, the overall bone re-

modeling is increased, where the activity of the osteoclasts is su-

perior to the one of the osteoblasts, leading to bone loss. We

quantified the osteoblast activity by measuring the fluorescent

calcein deposits within the bone during its formation between

2 injections, 7 days apart. The cortical bone in the midshaft of

the femur showed a specific increase of the periosteal mineral-

ized surface in the ovariectomized mice exposed to warmth

compared with the RT-housed controls, without the endocortical

surface and the trabecular bone mineralization (measured in the

head of the femur) being affected (Figures 6A–6C and S5D). The

increased osteoblast activity was confirmed by the higher levels

of circulating osteocalcin in the warmth-exposed ovariecto-

mized mice, but not in the sham-operated controls (Figures 6D

and S5E). Consistent with warmth exposure, the specific in-

crease in the periosteal mineral apposition rate (MAR) was

observed in the ovariectomized mice receiving the warm-adapt-

ed microbiota (Figures 6E–6I and S5F), suggesting that similar

mechanisms mediate the effects of warmth exposure and

warm microbiota transplantation. The active osteoclast number

was then quantified using Tartrate-resistant acid phosphatase

(TRAP) staining on femur trabecular histological sections. No dif-

ferences were observed after warmth exposure, or warm micro-

biota transplantation in any of the groups (Figures 6J–6L; data

not shown). This was supported by the circulating CTX-1 levels

as marker of bone resorption, which was neither changed by

warmth in both ovariectomized and non-ovariectomized mice,

nor in the warm microbiota-transplanted animals (Figures 6M

and S5G). Notably, the bone remodeling effects were indepen-

dent of the collagen deposition, bonemineral content, and circu-

lating vitamin D levels, as we did not detect differences for these

parameters between any of the groups (Figures S5H–S5K; data

not shown). These data indicate that warmth exposure or warm

microbiota transplantation shifts the balance between osteo-

blast activity and the number of active osteoclasts toward

bone formation.

Warmth Exposure Increases Production of Polyamines
that Affect Osteoblast Activity and Decrease Osteoclast
Differentiation
To investigate the link between microbiota and bone during

warmth, we performed ametagenomic analysis of the gut micro-

biota from 24-week-old female mice that were exposed for

(E) Hierarchical clustering associated with a heatmap comparing the CLRs of the OTUs selected for a p < 0.05 of mice as in (A). An idealized tree represents their

taxonomic hierarchy down to genus level associated with bars that are color-coded for phylum and family. Each column represents one mouse.

(F) Effect size of all significantly changed genera calculated with aldex2 (FDR < 0.05) in samples from mice as in (A).

(G) CLRs representing relative abundance of the most changed OTUs (FDR < 0.01) by warm exposure in samples frommice as in (A). Boxplots represent median

and quantiles; the whiskers show 1.5 inter quartile range and values outside the whisker’s box are represented as diamonds.

Data are shown as mean ± SD (n = 8 per group). Significance in (F) and (G) is calculated using Welch t test, *p < 0.05; **p < 0.01; ***p < 0.001.
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8 weeks to 34�C and from the RT-housed controls. Among 536

identified pathways, 134were differentially abundant in the feces

of warmth-exposed animals compared with RT controls. Within

the top ten regulated pathways was the polyamine synthesis

showing higher levels for the key genes responsible for poly-

amine production and lower levels for those involved in the poly-

amine degradation processes (Figures 7A, 7B, and S6A). Deeper

analysis of the metagenomic data by genus suggested that

expansion of Akkermansia muciniphila during warmth exposure,

as well as the genera Bacteroides and Alitsipes, may be the main

contributors to the polyamine biosynthesis (Figure S6B).

Conversely, the decreased propensity of the microbiota to

degrade spermine and spermidine could be attributed to the

decline of the bacteria from theMuribaculaceae or Lachnospirae

genera (Figure S6C). The polyamines have fast plasma turnover

and rapidly reach their target tissues (Pegg, 2009). To directly

test whether the metagenomic data would correlate with an

actual increase in the respective polyamine metabolites, we

developed an isotope dilution-based, hydrophilic interaction

chromatography coupled to targeted tandem mass spectrom-

etry (HILIC-MS/MS) method for absolute quantification of the

polyamine metabolites. In agreement with the metagenomics
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Figure 4. Warm Microbiota Transplantation Prevents Bone Loss and Improves Bone Strength
(A–D) Delta between twomicro-CTmeasurements (day 0 and day 32 after starting themicrobiota transplantation) of proximal tibias at trabecular level in 21-week-

old ovariectomized, microbiota recipient female mice. The recipient mice were ovariectomized at week 16, and repetitively transplanted with fecal microbiota

from 34�C exposed, or RT-kept donors (OvaTransp34�C or OvaTranspRT, respectively). The 34�C treatment of the 16-week-old female donor mice was initiated

1 month before starting the transplantations and lasted for the whole length of the experiment. BV/TV (A), BV (B), TV (C), and connectivity density (D).

(E) Representative reconstruction (each consisting of 262 sections, n = 10 per group) of trabecular bone use for the calculations. Scale bar, 100 mm.

(F–H) Cortical BV (F) and width (G) measured in midshaft of tibias frommice as in (A). (H) representative cortical section (from 62 sections per bone of eachmouse

of n = 10 per group). Scale bar, 0.5 mm.

(I–M) Biomechanical analysis of tibias frommice as in (A) showing elastic energy (I), energy to fracture (J), yield point (K), ultimate stress (L), and Young’s modulus

(M), all normalized to their body weights.

Data are shown as mean ± SD (n = 10 per group). Significance is calculated using Mann-Whitney t test, *p < 0.05; **p < 0.01; ***p < 0.001.
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Figure 5. Warmth and Warm Microbiota Transplantation Ameliorate Ovariectomy-Induced Transcriptional Deregulation

(A) Mean-difference plot (MD-plot) of the log fold change gene expression between tibias of 24-week-old female mice that were ovariectomized or sham-

operated at 16 weeks of age and then kept at RT for 2 months (OvaRT versus ShamRT, respectively) shown as average CPM. Red dots show the increased and

blue show the decreased genes selected for FDR < 0.05.

(B) MD-plot of the log fold change of gene expression between tibias of 24-week-old female mice that were ovariectomized at 16 weeks of age and then kept at

34�C for 2 months (Ova34), versus ShamRT, shown as average CPM. Red dots show increased and blue show decreased genes selected for FDR < 0.05.

(C) Comparison between the log fold change of genes deregulated by ovariectomy at RT shown in red (|log2FC| > 1; OvaRT versus ShamRT ) and the same genes

when exposing the ovariectomized mice at 34�C shown in blue (|log2FC| > 1; Ova34�C versus ShamRT).

(D) Top 10 most deregulated Reactome pathways between tibias of OvaRT and Ova34�C mice.

(E) Volcano plot comparing the p value and the log fold change of gene expression between tibias of 21-week-old ovariectomized, microbiota recipient female

mice (OvaTransp34�C or OvaTranspRT) as in Figures 4A–4E. Green dots, |log2FC| > 1; blue dots, p < 0.01; red dots, p < 0.01 and |log2FC| > 1.

(F and G) Expression analysis of the ovariectomy-altered genes ([|log2FC| > 1] at RT [OvaRT versus shamRT]) in tibia from OvaTransp34�C mice compared with

the OvaTranspRT controls (OvaTransp34�C versus OvaTranspRT). In (F), blue and red show genes (up- or downregulated, respectively) unaltered by microbiota

(legend continued on next page)
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data, the concentrations of putrescine, N1-acetylputrecine, N1-

acetylspermidine, and spermine were higher in feces of the

warmth-exposed animals (Figures 7C, 7D, and S6D). This was

coupled to higher spermine levels in the cecum of warmth-

exposed mice or elevated N1-acetylspermidine and N1N12-

acetylspermidine in the warm microbiota-transplanted mice

(Figures 7C, S6E, and S6F).

To test the effect of polyamines on bone cellular activity, we

performed an ex vivo experiment with spermine and spermidine

supplementation in primary osteoblast or osteoclast cultures

during differentiation. Since it is difficult to correlate the in vivo

levels with those in vitro, we used different concentrations in

the primary cultures and assessed the outcome in a dose-

responsemanner. Supplementation of spermine and spermidine

at high (but not low) doses in osteoclasts during differentiation

caused downregulation of cathepsin K (CtsK), TRAP 5 (Trap5b),

and matrix metalloprotease 9 (Mmp9), which are markers of

osteoclast activity and differentiation (Figures 7E, 7F, and

S6G). The decrease in expression of the osteoclast differentia-

tion markers was associated with a reduced number of differen-

tiated osteoclasts measured by TRAP staining (Figures 7G and

S6H). These findings are in agreement with the studies in mice

that oral supplementation of spermine and spermidine in an

ovariectomy-induced model of osteoporosis was sufficient to

prevent bone loss, measured by%BV/TV in vertebra (Yamamoto

et al., 2012). The anti-osteoclast effects of spermidine, but not

spermine, were observed even when these polyamines were

added after differentiation, where 24 h of spermidine supple-

mentation was sufficient to reduce the expression level of Ctsk

and Trap5b (Figures S6I and S6J). Spermine increased osteo-

blast expression of osteocalcin (Ocn) and osteoprotegerin

(Opg) in a dose-dependent manner (Figure 7H). Similarly,

elevated spermidine levels augmented osteopontin (Opn), os-

teoprotegerin (Opg), and receptor activator of nuclear factor

kappa-B ligand (Rankl) expression, indicating an increased oste-

oblast function (Figure 7I), coupled to a decrease in the Rankl/

Opg ratio that could explain the decreased osteoclastogenesis.

These observations were supported by an enhanced activity of

alkaline phosphatase (ALP) when spermine and spermidine

were added to the osteoblasts (Figures 7J–7K). These data sup-

port the observations regarding the osteoblast function in vivo

during warmth exposure and warm microbiota transplantation,

and they demonstrate that polyamines could mediate the

enhanced osteoblast activity. This increase was observed

despite the slight reduction of the cell viability (lower total protein

and RNA) upon spermine supplementation (Figures S6K and

S6L), which may result from interaction of spermine with serum

from the media, producing H2O2 radicals by oxidative degrada-

tion of the polyamines (Wang et al., 2018).

Finally, we directly tested the necessity of the polyamine

biosynthesis in mediating the warmth-induced effects on the

bone in vivo. Polyamine supplementation in older female mice

increased the yield point, elastic energy, and energy to fracture

of the femur to similar values as the warmth-exposed mice (Fig-

ures 7L–7P). Conversely, we used a polyamine biosynthesis

pathway inhibitor, diaminazene acetureate (DA), which prevents

formation of decarboxy-S-adenosinemethionine, a metabolite

that turns into spermine and spermidine (Karvonen et al.,

1985). DA also blocks spermidine and spermine acetyltransfer-

ase activity (Libby and Porter, 1992; Neidhart et al., 2014),

thus, inhibiting the back conversion of spermine and spermidine

toward putrescine, leading to reduced acetylspermine and ace-

tylspermidine formation. Treating warmth-exposed older female

mice with the polyamine inhibitor abolished the warmth-induced

increase in the yield point and elastic energy during the three-

point binding test in femur, revealing similar biomechanical pa-

rameters between the warmth-exposed, DA-treated mice and

the RT-housed controls (Figures 7L–7P). Moreover, the

warmth-induced increase in the trabecular BV and connectivity

density of tibia were reduced in the polyamine inhibitor-treated

mice despite the warmth exposure, and there were no differ-

ences between RT and warmth-exposed, inhibitor-treated

mice in any of the trabecular and cortical parameters (Figures

S7A–S7F).

DISCUSSION

Over a century ago, Joel Asaph Allen proposed an ecogeograph-

ical model of adaptation to temperature differences for the ho-

meothermic animals, in which the body surface area-to-volume

ratio varies with the average temperature of the habitat, where

higher temperatures would favor the higher ratios and heat dissi-

pation, called the Allen’s rule (Allen, 1877). In growing long

bones, a cartilaginous disk called the growth plate separates

the epiphysis from the metaphysis and diaphysis. A new carti-

lage is produced at the epiphyseal side of the growth plate, while

the previously made cartilage at the metaphyseal side is re-

placed by new bone leading to bone elongation. With the onset

of puberty in humans, the deposition of cartilage ceases and the

metaphysis fuses with the epiphysis, leading to ceased longitu-

dinal apposition and disappearance of the growth plate (Jilka,

2013; Pines and Hurwitz, 1991). During adulthood, bones un-

dergo permanent remodeling that enables adaptation of the

skeleton to the environment and in response to the continuous

microfractures. This remodeling is kept in balance by precise

coupling between the osteoclast and osteoblast activities. Dur-

ing aging, this exquisite balance is often disrupted, progressively

leading to osteopathy. Our data show that the bone remodeling

is largely affected by the environmental temperature and that

warmth exposure leads to improved trabecular and cortical

bone structure and strength. Interestingly, in mice while warmth

exposure during development can indeed lead to lengthening of

the bones (Racine et al., 2018; Serrat, 2013, 2014; Serrat et al.,

2008, 2015), in our experiments applying the heat post-develop-

mentally and during middle adulthood did not change the bone

length (and thus surface area-to-volume ratio) but still increased

the bone strength and mass. Accordingly, transplantation of the

warm-adapted microbiota in older female and younger male

transplantation. Green shows geneswith reduced or reverted expressionwhenmice are transplanted with warmmicrobiota. (G) Comparison between the log fold

changes of genes (|log2FC| > 1) as in (C) using the groups of mice from (F): OvaRT versus ShamRT (red) and OvaTransp34�C versus OvaTranspRT (blue).

(H) Top 10 most deregulated reactome pathways between tibias from OvaTransp34�C and OvaTranspRT mice.

(I) Top 10 most deregulated reactome pathways between tibias from 34�C and RT mice.
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mice increased the bone strength and density but did not change

the bone length. These data may therefore imply an extension to

the Allen’s rule, suggesting elongation-independent effects of

warmth exposure, which predominantly favors increased bone

density and strength through microbiota alterations.

The frequency of major osteoporotic fractures varies substan-

tially depending on the country, being highest in Scandinavia and

lowest in Africa. While this may partly reflect ethnic influences, it

is also observed in Europe where the hip fracture rate in northern

Europe is 11 times higher than in the Mediterranean area (Cheng

et al., 2011; Cauley et al., 2014; Johnell et al., 1992; Eastell et al.,

2016). There could be several explanations regarding the origin

of these geographical differences, and it has been proposed

that levels of vitamin D and calcium consumption as well as

diet and genetics may be causal factors (Prentice, 2004; Yeum

et al., 2016; Zengin et al., 2015). Without excluding any of the

above-mentioned causes, our human metadata analysis sup-

ports a geographical gradient and shows that the osteopo-

rosis-related hip fractures inversely correlate with the average

temperatures and positively with latitude independently of

E
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J

DCB

HGF I

K L M

Figure 6. Warmth and Warm Microbiota Transplantation Increase Periosteal Bone Formation

(A and B) Periosteal (A) and endocortical (B) mineralized surface after calcein injection in 24-week-old female mice that were ovariectomized at 16 weeks of age

and exposed for 2 months to 34�C or kept at RT.

(C) Representative images (of n = 6) of fluorescent calcein in femur midshaft used for the quantifications.

(D) Osteocalcin levels in plasma of mice as in (A).

(E–I) Periosteal mineralized surface (E), periosteal MAR (F), endocortical mineralized surface (G), and endocortical MAR (H) in tibias of 21-week-old ovariecto-

mized, microbiota recipient female mice (OvaTransp34�C or OvaTranspRT) as in Figures 4A–4E. (I) Representative images (n = 6) of fluorescent calcein in femur

midshaft used for the quantifications. Scale bar, 0.5 mm.

(J–L) TRAP staining quantification of osteoclast number in femur trabeculae of mice as in (A) shown in (J) and of mice as in (E) shown in (K). (L) Representative

images (n = 6) of the quantifications shown in (J) and (K). Arrowheads correspond to the TRAP signal. Scale bar, 50 mm.

(M) CTX-1 levels in plasma of mice as in (J) and (K).

Data are shown as mean ± SD (n = 6 per group). Significance (p value) is calculated using Mann-Whitney t test, *p < 0.05; **p < 0.01; ***p < 0.001.
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vitamin D and calcium consumption, suggesting that the results

we observe in mice could be translated to humans.

Our work shows that more than 90% of the ovariectomy-

induced transcriptional changes in the bone are dampened by

exposure to warmth and 59% by transplanting the ovariecto-

mized mice with warm-adapted microbiota. These results sug-

gest a major protective effect of these treatments on the overall

bone alterations that underlie bone loss. The findings that the

warmth exposure affects the polyamine biosynthetic pathway

in themicrobiota suggest a possible link between these changes

and the effects on bone mass and strength and presumably

other tissues that are affected by the polyamine levels. Aging is

associated with decline in the polyamine levels (Scalabrino and

Ferioli, 1984; Pucciarelli et al., 2012), and polyamine supplemen-

tation protects against several age-related diseases (Ramos-

Molina et al., 2019; Tofalo et al., 2019), including memory impair-

ment (Gupta et al., 2013; Fr€uhauf et al., 2015), cardiovascular

disease (Eisenberg et al., 2016), and cancer (Yue et al., 2017),

while extending the lifespan of various organisms (Soda et al.,

2009; Kiechl et al., 2018). Warmth-inducedmicrobiota-mediated

increases in polyamine biosynthesis may therefore be of general

physiological importance that could extend well beyond bone-

related research, impacting several age-related diseases and

prolonging health span.

Limitations of Study
Our study does not address the upstreammechanisms by which

warmth exposure alters the microbiota composition. These

changes are unlikely due to a direct temperature effect as the in-

ternal body temperature of the mice was unaffected when we

exposed them to 34�C. It is likely that the decreased food intake

and movement during warmth exposure will jointly impact the

microbiota composition to a certain extent; however, follow-up

work is needed to clarify the initial triggers and pathways by

which the gut microbiota responds to the increased environ-

mental temperature. Similarly, while the study suggests a critical

direct or indirect contribution of the polyamines and the gut mi-

crobiota, it does not exclude that there could be additional mi-

crobiota-related, or unrelated mechanisms by which warmth

exposure increases bone strength.
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(E and F) Relative mRNA expression levels in cultured primary osteoclasts subjected to different spermine (E) or spermidine (F) concentrations, measured

by qPCR.
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bar, 200 mm.

(H and I) Relative mRNA expression levels in cultured primary osteoblasts subjected to different spermine (H) or spermidine (I) concentrations, measured

by qPCR.

(J and K) Relative alkaline phosphatase (ALP) activity in osteoblast culture after spermine (J) or spermidine (K) supplementation at different concentrations.

(L–P) Biomechanical analysis using three-point bending test of femur from 23-week-old femalemice that were RT kept (RT), warm exposed (34�C), supplemented

with freshly prepared polyamine mix and RT kept (RT-polyamines), or provided with 50 mm DA and kept at 34�C (34�C-DA), starting at 16 weeks of age until

sacrifice. Polyamines and DA were supplemented in drinking water every second day. The panels show yield point (L), elastic energy (M), energy to fracture (N),

ultimate force (O), and Young’s modulus (P) that are normalized to their body weight values at sacrifice.

Data are shown as mean ± SD (n = 8 per group). Significance is calculated based on one-way ANOVA, *p < 0.05; **p < 0.01; ***p < 0.001.

Significance (p value) in all panels except (A) and (L)–(P) is calculated using Mann-Whitney t test, *p < 0.05; **p < 0.01; ***p < 0.001.
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hibition of putrescine-stimulated S-adenosyl-L-methionine decarboxylase by

berenil and pentamidine. Biochem J. 231, 165–169.

Kasper, S., Gillison, M.L., Blumenschein, G., Fayette, J., Guigay, J., Colevas,

A.D., Licitra, L., Harrington, K., Vokes, E.E., Even, C., et al. (2018). Nivolumab

(Nivo) vs Investigator’s choice (IC) for platinum-refractory (PR) recurrent or

metastatic (R/M) squamous cell carcinoma of the head and neck (SCCHN;

CheckMate 141): outcomes in first-line (1L) R/M Patients (Pts) and updated

safety and efficacy. Oncol. Res. Treat. 41, 96.

Kiechl, S., Pechlaner, R., Willeit, P., Notdurfter, M., Paulweber, B., Willeit, K.,

Werner, P., Ruckenstuhl, C., Iglseder, B., Weger, S., et al. (2018). Higher sper-

midine intake is linked to lower mortality: a prospective population-based

study. Am. J. Clin. Nutr. 108, 371–380.

Kieser, S., Brown, J., Zdobnov, E.M., Trajkovski, M., and McCue, L.A. (2020).

Atlas: a Snakemake workflow for assembly, annotation, and genomic binning

of metagenome sequence data. BMC Bioinformatics 21, 257.

Li, L., Rao, S., Cheng, Y., Zhuo, X., Deng, C., Xu, N., Zhang, H., and Yang, L.

(2019). Microbial osteoporosis: the interplay between the gut microbiota and

bones via host metabolism and immunity. MicrobiologyOpen 8, e00810.

Libby, P.R., and Porter, C.W. (1992). Inhibition of enzymes of polyamine back-

conversion by pentamidine and berenil. Biochem Pharmacol. 44, 830–832.

Madeira, F., Park, Y.M., Lee, J., Buso, N., Gur, T., Madhusoodanan, N.,

Basutkar, P., Tivey, A.R.N., Potter, S.C., Finn, R.D., and Lopez, R.D. (2019).

The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic

Acids Res. 47, W636–W641.

Markle, J.G., Frank, D.N., Mortin-Toth, S., Robertson, C.E., Feazel, L.M.,

Rolle-Kampczyk, U., von Bergen, M., McCoy, K.D., Macpherson, A.J., and

Danska, J.S. (2013). Sex differences in the gut microbiome drive hormone-

dependent regulation of autoimmunity. Science 339, 1084–1088.

Martı́n-Fernández, J.A., Barcelo-Vidal, C., and Pawlowsky-Glahn, V. (2003).

Dealing with zeros and missing values in compositional data sets using

nonparametric imputation. Math. Geol. 35, 253–278.

Mcmillan, P.J., Dewri, R.A., Joseph, E.E., Schultz, R.L., andDeftos, L.J. (1989).

Rapid changes of light microscopic indices of osteoclast-bone relationships

correlated with electron microscopy. Calcif. Tissue Int. 44, 399–405.

Meyer, C.W., Ootsuka, Y., and Romanovsky, A.A. (2017). Body temperature

measurements for metabolic phenotyping in mice. Front. Physiol. 8, 520.

Mosekilde, L. (2000). Age-related changes in bone mass, structure, and

strength - effects of loading. Z. Rheumatol. 59, 1–9.

Neidhart, M., Karouzakis, E., J€ungel, A., Gay, R.E., and Gay, S. (2014).

Inhibition of spermidine/spermine N1-acetyltransferase activity: a new thera-

peutic concept in rheumatoid arthritis. Arthritis Rheumatol. 66, 1723–1733.

Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. (2017).

metaSPAdes: a new versatile metagenomic assembler. Genome Res 27,

824–834.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Calcein Sigma-Aldrich C0875

RNA-later Invitrogen AM7020

Neomycin-streptomycin-penicillin Sigma-Aldrich P4083

Vancomycin Sigma-Aldrich V2002

Metronidazole Sigma-Aldrich M3761

Bacitracin Sigma-Aldrich 11702

Ciprofloxacine HCL Alkaloid 2000314

CEFAZ Alkaloid 1046371

Spermine for in vivo Sigma-Aldrich 85590

Spermidine for in vivo Sigma-Aldrich S2626

Diaminazene Acetureate Sigma-Aldrich D7770

Trizol Thermo Fisher Scientific 15596018

High-Capacity cDNA Reverse

Transcription Kit

Applied Biosystems 4368813

Power-up SYBR Green Applied Biosystems A25742

aMEM medium bioconcept 1-23P10-M

100X Penicillin Streptomycin GIBCO 15140

100x glutamine GIBCO 25030

amino-acids mix BioConcept 5-12K01-H

Recombinant murine M-CFS Peprotech 31502

Recombinant murine sRANK Ligand Peprotech 315-11C

Spermine for cell culture Sigma-Aldrich S4264

Spermidine for cell culture Sigma-Aldrich S0266

Fast violet B salt ChemCruz sc-215029B

Sirius red dye reagent: Direct red 80 Sigma-Aldrich P744

Critical Commercial Assays

PowerFecal DNA Kit QIAGEN 12830-50

5Prime HotMaster mix Quantabio 2200400

MiSeq reagent kit V2 Illumina MS-102-2003

TruSeq Nano DNA Library Prep Kit Illumina 20015964

TruSeq RNA Library Prep Kit v2 Illumina RS-122-2001

Calcitriol (INN) Elisa kit Abbexa abx 513030

Osteocalcin Elisa Kit Immutopics (quidel) 60-1305

RatLaps CTX-I EIA Immunodiagnostic Systems AC-06F1

Pierce BCA Protein assay kit Thermo Scientific 23225

Deposited Data

Raw shotgun-metagenome data of

female mice

This study PRJNA647832

Raw amplicon data of male mice This study PRJNA648020

Raw amplicon data of female mice This study PRJNA647833

Raw RNA seq data This study PRJNA648022

SILVA database v132 (Quast et al., 2013) N/A

Reactome pathways database (Fabregat et al., 2017) N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Mirko

Trajkovski (Mirko.Trajkovski@unige.ch)

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Resources for the metagenomic analysis This study https://github.com/SilasK/WarmMicrobiota

Resources for the 16SrDNA analysis This study https://github.com/SilasK/WarmMicrobiota

Resources for the human correlation

analysis

This study https://dx.doi.org/10.6084/m9.figshare.0.

12696407

Targeted Metabolomic data This study https://dx.doi.org/10.6084/m9.figshare.

12696419

Experimental Models: Organisms/Strains

C57BL/6J mice Janvier Labs SC-C57J-M

Germ-free mice on C57BL/6J background Germ-free Clean Animal Facility, University

of Bern, Switzerland

N/A

Oligonucleotides

Primer for 16S rDNA library preparation:

806 Reverse Primer GGACTACNVGGG

TWTCTAAT - 515 Forward Primer GTG

YCAGCMGCCGCGGTAA.

515F-806R barcoded primers Integrated

DNA Technologies (IDT)

10776320 (plate5) and 10776323 (plate6)

Primer for 16S rDNA library

sequencing: read1, 50- TATGGTAA

TTGTGTGCCAGCMGCCGCGGTA

A-30, read2, 50- AGTCAGTCAGCCG

GACTACHVGGGTWTCTAAT30 and
index read, 50- ATTAGAWACCCBD

GTAGTCCGGCTGACTGACT30

Illumina N/A

Primer used for the cell culture

characterization: See Table S1

This study N/A

Software and Algorithms

VivaCT40 associated software Scanco system; Zurich, Switzerland N/A

Instron 1114 associated software Instron, High Wycombe, UK N/A

Amplicon sequencing plipline https://github.com/SilasK/16S-dada2 N/A

Statistical 16S data analysis https://github.com/SilasK/microbiome-

analysis

N/A

Sci-kit bio, compositional data analysis http://scikit-bio.org/ N/A

Metagenomic reads analysis:

metagenome-atlas v2

(Kieser et al., 2020) N/A

MetaCyc Pathways (Caspi et al., 2016) N/A

TopHat v.2 software John Hopkins university N/A

RSeQC V2.3.3 N/A http://rseqc.sourceforge.net/

PicardTools1.92 N/A https://broadinstitute.github.io/picard/

R/Bioconductor package EdgeR v.3.4.2 N/A https://www.bioconductor.org/packages/

release/bioc/html/edgeR.html

Raw LC-MS/MS data was processed using

the Agilent Quantitative analysis software

(version B.07.00)

MassHunter Agilent technologies N/A

Metaexpress (5.1.41) software Molecular devices N/A

Leica Q image analyzer Leica N/A

Bioquant osteo software Bioquant N/A
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Materials Availability
All materials used in this study are either commercially available or obtained through collaboration, as indicated.

Data and Code Availability
All sequencing data generated in this study is deposited at the Sequence Read Archive (SRA) of the National Center for Biotech-

nology Information. The 16S rDNA sequencing of the female and the male mice have accessions SRA: PRJNA647833 and SRA:

PRJNA648020, respectively. Shotgunmetagenomics data is available under the id SRA: PRJNA647832 and the RNA seq data under

SRA: PRJNA648022. The data for targeted metabolomics and the correlation analysis in human are deposited in the open access

repository figshare: https://doi.org/10.6084/m9.figshare.12696419 and https://doi.org/10.6084/m9.figshare 0.12696407, respec-

tively. The scripts used for the analysis of the 16S rDNA, metagenomc and human epidemiology data are available at https://

github.com/SilasK/WarmMicrobiota.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mouse Models
All C57BL/6Jmicewere purchased from Janvier Labs andwere kept in a specific pathogen-free facility (SPF) in individually ventilated

cages, 2 mice per cage. All mice were in a 12-h day/night cycle and fed a standard chow diet (SDS RN3). Upon arrival and before the

start of the experiment, mice were allowed to acclimatize in the new environment for 1 week. GFmice on C57BL/6J backgroundwere

obtained from the GF clean animal facility of the University of Bern (in collaboration with A.M.) and transplanted with donormicrobiota

immediately upon arrival. At the start of the experiments, the male mice were at 8 weeks, and females were at 16 weeks of age. An-

imals were equally allocated into groups based on their bodyweight to ensure equal starting points, and otherwise randomly.Warmth

exposure was done at 34�C in a light and humidity-controlled climatic chamber (TSE, Germany) in SPF conditions using individually

ventilated cages. The 34�C-like pair-fed animals were kept at room temperature (RT) and fed an equal amount to the warm exposed

animals. This was equivalent to�25% less than RT ad libitum fed, and the food was provided each day at 6pm. No signs of stress or

suffering we detected in any of themice. All animal experiments were approved by the Swiss federal and Geneva cantonal authorities

for animal experimentation (Office Vétérinaire Fédéral and Commission Cantonale pour les Expériences sur les animaux de Genève).

Primary Cell Culture
Three male C57Bl/6J mice of 3 weeks old were sacrificed and their tibias, femurs and humeri were collected. After epiphyses exci-

sions, the bonemarrowwas flushed, collected in aMEM10%FBS and pooled from each bone for osteoclasts differentiation. The rest

of the bone was kept for the osteoclast isolation. For the osteoclasts, after filtration through a 70 mmfilter, the cells were plated in T75

in aMEM 10%FBS + 10ng/ml MCFS. After incubation for 24h at 37�C and 5%CO2, the supernatant was collected and the cells were

seeded as 200 000 cells/ml in aMEM + 10% FBS + 30ng/ml MCFS. After 48h, the differentiation was initiated by adding 100ng/ml

RANKL to the medium as well as spermine or spermidine at the indicated concentration (0-0.1-1-10 mM). After 14 days, RNA was

extracted and cells were fixed for 1h at RT in 3.7% formaldehyde for TRAP staining. Alternatively, cells were kept in differentiating

medium for 14 days and spermine and spermidine were added for 24h before RNA extraction and TRAP staining. For the osteoblasts,

the boneswere cut in small pieces and incubated in aMEM10%FBS + 1mg/ml Collagenase II for 90�Cat 37�Cwith shaking. The cells

were rinsed and then incubated in aMEM10%FBS medium at 37�C with 5%CO2, and split a couple of times for proliferation before

seeding them to 70 000cells/ml in differentiatingmedium (aMEM10%FBS+ 50mg/ml ascorbic acid + 10mM b-glycerophospate) sup-

plemented with spermine or spermidine (at 0; 0.1; 1 and 10 mM). After 7 days of treatment, cells were harvested for RNA extraction

and ALP measurements, and after 25 days of treatment for Sirius red or Alizarin red measures. The following chemical compounds

were used: aMEMmedium (bioconcept ref 1-23P10-M supplemented with 25mMNaHCO3, 100X Penicillin Streptomycin (Gibco Ref:

15140), 100x glutamine (Gibco Ref: 25030) and 3.75 ml amino-acids mix (BioConcept ref: 5-12K01-H)), recombinant murine M-CFS

(peprotech ref 31502), recombinant murine sRANK Ligand (Peprotech ref 315-11C), Spermine (Sigma ref S4264), Spermidine (Sigma

Ref: S0266).

METHOD DETAILS

Ovariectomy
Micewere anesthetizedwith Xylazine/Ketamine (mixture of 100mg/kg ketamine and 16mg/kg xylazine) and shaved below the ribs on

the back side. Betadine was applied on the area for appropriate disinfection. After a 1-2 cm incision through the skin and the muscle

layer just below the ribs, the ovary was localized, the fallopian tube ligated with dissolving suture and the ovary removed. The muscle

layer was sutured with dissolving suture, the wound closed with staples and disinfected. The same procedure was performed on the

other side. A dose of Tamgesic was administered 4 hours after the surgery, and the staples were removed 7 days after the surgery

under isoflurane anesthesia. The sham-operated animals underwent the same procedure, without ligating the fallopian tube and the

ovary excision.
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Sample Collection at Sacrifice
To measure the dynamic indices of bone formation, mice received subcutaneous injections of calcein in saline solution at 9 and

2 days before euthanasia. 500 ml of blood was taken from terminally anesthetized mice in tubes with 10 ml of 0.5 mM EDTA, 4 ml

of aprotinin (1.3%) and 4 ml of DPP-IV (10mM) and plasma stored at -80�C. Samples for RNA isolationwere stored in RNAlater solution

(Invitrogen ref AM7020). Bone samples for the CT-scan analysis were stored in a humid package at -20�C, and the samples for his-

tology in 3.8% formaldehyde. All other samples snap frozen in liquid nitrogen. The tail length wasmeasured with a ruler from the tip of

the tail to the border between the fur and the skin.

Microbiota Transplantation
Upon arrival, 8 weeks old male GF mice were handled in aseptic conditions and immediately colonized by gavaging them with cecal

content of the appropriate donor. The donors were male C57Bl/6Jmice that were exposed to 34�C, or kept at RT for 4 weeks starting

at 8 weeks of age. 500 ml of freshly collected cecal contents from donors were pooled and suspended in 5 ml of anaerobic PBS, to

make a gavagemixture for each group of colonized mice. Eachmouse was orally gavaged with 100 ul of the solution upon arrival and

2 days later. Animals were kept for 7 days in dirty cages from the respective donors and then switched to sterilized cages.

For microbiota transplantation of the ovariectomized mice, we used female C67Bl/6J recipients with conventional microbiota

already present, and the ovariectomy was done at 16 weeks of age. The donors for these experiments were female mice that

were exposed to 34�C for 4 weeks starting at 16 weeks of age. Fresh fecal pellets from the donors were freshly collected every

2 days and immediately homogenized in 1 ml of anaerobic PBS. After a short centrifugation (300g, 30sec), the supernatant was

then immediately gavaged to the respective recipient. In this condition, one cage of donors (1 pellet per mouse from both mice)

was used to repopulate 1 cage of recipients. Each recipient received 200 ml of the donor mixture every 2 days during 4 weeks.

Antibiotic Treatment
16-weeks-old female mice were treated with fresh antibiotics and kept at either room temperature or 34�C for 7 weeks (RT-Abx and

34�C-Abx respectively). Antibiotics cocktail was composed of 100 mg/ml neomycin, 50 mg/ml streptomycin, 100 U/ml penicillin,

50 mg/ml vancomycin, 100 mg/ml metronidazole, 100 mg/ml CEFAZ, 125 mg/ml Ciprofloxine hydrocholoride, 1 mg/ml bacitracin pro-

vided in the drinking water changed twice per week (Chevalier et al., 2015; Suárez-Zamorano et al., 2015)

Polyamines Supplementation and Inhibitor Treatment
6-weeks old C57BL/6J female mice were given a mixture of Spermine (Sigma-Aldrich) and Spermidine (Sigma-Aldrich) freshly dis-

solved in drinking water at concentration of 0,5mM from each compound every second day during additional 45 days at room tem-

perature. Diaminazene Acetureate (Sigma-Aldrich) was supplemented in drinking water at a concentration of 50mMevery second day

during 45 days to the 16-weeks old C57BL/6J femalemice that are kept at 34�Cwith temperature-controlled chamber in conventional

facility. Food and water were given to the mice in ad libitum.

Micro-CT Analysis
The limbs were scanned in vivo before the ovariectomy to determine the basal state using a micro-CT (VivaCT40/ Scanco system;

Zurich, Switzerland). After Xylazine/Ketamine anaesthesia, limb were scanned for 18 min. Final scans were performed post mortem

on isolated bones. Subsequent analysis was done usingmicro-CT software. For the femoral and tibial trabecular region, we analyzed

one hundred slices starting from 50 slices below the distal growth plate. Femoral and tibial cortical structure was assessed through 60

continuous CT slides (600 mm) from the bone midshaft. Images were segmented using an adaptative-iterative threshold approach,

rather than a fixed threshold. Morphometric variables were computed from binarized images using direct 3D technique that does not

rely on prior assumptions about the underlying structure (5). For trabecular bone regions, we assessed the bone volume/total volume

(BV/TV). For cortical bone at the femoral and tibial midshaft, we measured the cortical bone volume (mm3) and the average cortical

thickness named cortical width (mm). The lengths of the femurs were also measured from the CT-scans.

Biomechanical Analysis of the Bone
For the 3-points bending test to address the biomechanical parameters, tibias were placed on two supports separated by a distance

of 9.9 mm and load was applied to the midpoint of the shaft (creating a 3-points bending). Mechanical resistance to failure (displace-

ment and load applied) was measured using a servo-controlled electromechanical system (Instron 1114, Instron, High Wycombe,

UK) with actuator displaced at 2mm/minute. Ultimate force (maximal load, measured in Newtons [N]), Yield point (N), stiffness (elastic

energy, N/mm), and energy to fracture (surface under the curve of the plastic region, N*mm) were calculated. Young’smodulus (MPa)

was determined by the previously described equation (Mcmillan et al., 1989).

Human Metadata Analysis
We correlated the age-standardized incidence of hip fracture (per 100’000 inhabitants) per country using the data obtained fromCau-

ley et al. (2014) with the country’s average day temperature (1961–1990, Climate Change Data, World Bank Group), or the distance

from the equator (latitude) of their capitals. We accounted for the effect of calcium intake and Vitamin D serum levels (Wahl et al.,

2012; Balk et al., 2017) using partial-correlation analysis. This dataset contains age-standardized incidence of hip fracture and lati-

tude for 62 countries, temperature for 60 countries, vitamin D serum level for 38 countries and the calcium levels for 49 countries. The
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regression was performed using statsmodels (Skipper and Perktold, 2010). All code is available as specified in the Key Re-

sources Table.

16S Gut Microbiota Profiling
At the end of the experiment fecal samples were collected in sterile tubes and immediately frozen and kept at -80�C. Cecal samples

were collected after sacrifice of themice, snap frozen and conserved at -80�C. Fecal and cecal bacterial DNAwas extracted using the

PowerFecal DNA Kit (Qiagen, Ref. 12830-50) and the 16SrDNA library was built following the standardized protocol from the earth

microbiome project (Caporaso et al., 2011, 2012). DNA was amplified with QuantaBio 5Prime HotMasterMix using barcoded univer-

sal bacterial primers targeting variable region V4 of 16SrRNA gene (515F-806R barcoded primers, Illumina): 806 Reverse Primer

GGACTACNVGGGTWTCTAAT - 515 Forward Primer GTGYCAGCMGCCGCGGTAA. 2 ng of template was used and the PCR con-

ditions included an initial denaturation at 94�C for 3’, followed by 35 cycles of denaturation at 94�C for 45’’, annealing at 50�C for 1’,

and extension at 72�C for 90’’, with a final extension at 72�C for 10’. Each PCRwas done in triplicates and later combined and quality

checked on an agarose gel. Each PCR amplification was then quantified with Quant-iT PicoGreen dsDNA Assay with SpectraMax

Gemini XPSmicroplate reader and pooled to an equal amount of 200 ng per sample to form the library. The library was purified using

QIAquick PCR purification Kit (Qiagen, Ref. 28104), and sequenced from both ends on Illumina MiSeq (kit v2) to generate 2x250bp

paired-end reads (Illumina, San Diego, CA, USA). Eighteen picometers of the library were mixed with PhiX DNA (10%) and were

loaded on a MiSeq Reagent kit V2 (500 cycles) together with customized sequencing primers; read1, 5’-TATGGTAATTGTGTGC

CAGCMGCCGCGGTAA-30, read2, 5’-AGTCAGTCAGCCGGACTACHVGGGTWTCTAAT-30 and index read, 50-ATTAGAWACC

CBDGTAGTCCGGCTGACTGACT-30. 250 bp paired-end sequencing was performed on the MiSeq platform (Illumina, USA) in the

iGE3, Institute of Genetics and Genomics in Geneva, CMU, University of Geneva. Sequencing results were obtained and de-multi-

plexed using standard method supplied by the MiSeq, Illumina.

Reads were processed using a pipeline based on dada2 v 1.8.0 (Callahan et al., 2016) (code accessible here : https://github.com/

SilasK/16S-dada2). In short, the reads were quality filtered with the parameters (truncLen=’’180,100’’, and maxEE=2), dereplicated,

merged, and chimeras removed. sequences with length outside of 253+-7 were removed. The resulting operational taxonomic units

were given numbers and were annotated with the SILVA database v132 (Quast et al., 2013). Richness and Shannon diversity were

calculated after rarefaction. Compositional data analysis was performed on OTUs with at least 1 count on average using aldex2 (Fer-

nandes et al., 2013) for the OTU, genus and family level. The reported p values are calculated using the welch test within aldex2 and

were corrected for multiple testing with the Benjamini-Hochberg procedure. Principal component analysis was performed on the

centered log2 ratios after multiplicative replacement of the zero values (Martı́n-Fernández et al., 2003).

Metagenomics Sequencing
Paired-end metagenomic libraries were prepared from 100 ngDNA using TruSeq Nano DNA Library Prep Kit (Illumina) and size

selected at about 350 bp. The pooled indexed library was sequenced in a HiSeq4000 instrument at the iGE3 facility (University of

Geneva).Metagenomics reads were processed using atlas v2 (Kieser et al., 2020). In short, using tools from the BBmap suite

v37.78 (Bushnell, 2020), readswere quality trimmed, and contaminations from themouse genomewere filtered out. Readswere error

corrected andmerged before assembly with metaSpades v.1.13 (Nurk et al. 2017). Contigs were binned using metabat2 (Kang et al.,

2019) and maxbin2 (Wu et al., 2016) and their predictions were combined using DAS Tool (Sieber et al., 2018). The predicted meta-

genome assembled genomes (MAGs), which had at least 50% completeness and < 10% contamination based on the estimation by

checkM (Ferris et al., 2018; Kasper et al., 2018; Parks et al., 2015) were clustered (95% average nucleotide identity) resulting in 147

representative genomes (referred later as genomes). The genes of each genome were predicted using prodigal (Hyatt et al., 2010)

and clustered using linclust (Steinegger and Söding, 2018) to a non-redundant gene catalog. The 2.3M genes were annotated using

KofamScan (Aramaki et al., 2020) and InterProScan 5 (Madeira et al., 2019). Using pygenomeprop (https://github.com/Micromeda/

pygenprop) the presence of genomes were annotated to contain complete or partial MetaCyc Pathways (Caspi et al., 2016). The ge-

nomes were quantified by the median of coverage in 1kb windows along the genome. MetaCyc pathways and Kegg orthologs (KO)

were quantified as the sum of the relative abundance of the genomes containing them. Welch test was used for testing significant

differences in pathway abundances between the groups.

RNA Extraction, Reverse Transcription and Real-time qPCR
Upon collection, tissues were stored in 1ml RNAlater and immediately processed for RNA extraction for the bone tissues or stored at

-80�C. For RNA extraction, tissues were placed in 2ml Eppendorf tubes containing 1ml Trizol (Thermo Fisher Scientific) andmechan-

ically disaggregated using the bead-based TissueLyser equipment (Qiagen) by shaking for 40 seconds at 30 Hz in presence of a sil-

icate bead for the bone and a metal bead for the other tissues. After brief centrifugation to remove tissue debris (3 minutes at 12000g

at 4�C), 200 ml chloroform was added, samples were shaken and centrifuged for 15 minutes at 12000g at 4�C. The chloroform phase

was collected, mixed with 500 ml isopropanol and centrifuged again as before. The pellet obtained was washed twice with 70%

ethanol and ultimately resuspended in 50 ml PCR-grade water. RNA from cell culture was extracted using 1ml of Trizol using the stan-

dard protocol. For retro-transcription we used High-Capacity cDNA Reverse Transcription Kit (Applied Biosystems) with 1 mg RNA

per sample. qPCR were done on a LightCycler 480 machine (Roche) with SYBR Green-based detection (Applied Biosystem, Power-

up). The primer sequences are shown in the Supplementary Data, as Table S1.
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Results were calculated using standard curve method and normalized to the TATA box binding protein (TBP) housekeeping gene,

and shown as fold change relative to the control group.

RNA Sequencing
Next Gen Sequencing of mRNA transcripts was done on Ilumina MiSeq 2500 platform at the sequencing facility of the Institute of

Genetics and Genomics of Geneva (iGE3), University of Geneva. RNA was isolated from entire tibias. For the experiment comparing

the ovariectomized mice transplanted with warm- or RT-microbiota (Ova. Transp. RT and Ova transp. 34�C), each group contained 4

samples where each sample correspond to one mice. For the experiment comparing Ovarectomized and sham operated mice

exposed to 34�C or RT (OvaRT, Ova 34�C, shamRT and sham34�C), each group was a sample pooled from 5 mice. Libraries for

the sequencingwere preparedwith poly-A selection according to Ilumina TrueSeq protocol. The readsweremappedwith the TopHat

v.2 software to the UCSC mm10 reference on new junctions and known junctions’ annotations. Biological quality control and sum-

marization were done with RSeQC-2.3.3 and PicardTools1.92.

The differential expression analysis was performed with the statistical analysis R/Bioconductor package EdgeR v.3.4.2 for the

genes annotated in mm10. Briefly, the counts were normalized according to the library size and filtered. The genes above 1 count

per million reads (cpm) (in experiment with replicate, in at least 3 samples) were kept for the further analysis. After normalization

of the counts, transcript abundances were compared in pairwise condition in a modified Fischer exact test (as implemented in

edgeR). p values of the differentially expressed genes were corrected for multiple testing error with a 5% FDR (false discovery

rate), using the Benjamini-Hochberg (BH) correction. Genes were called differentially expressed between any given two conditions

when their false-discovery rate was <0.05 and their fold-change >2. Transcripts with log(cpm)>0 and p%0.05 were subsequently

subjected to pathway analysis using Reactome pathways database (Fabregat et al., 2017), reporting the enrichment ratio (#

DEGs/Total Genes in dataset) and FDR-adjusted pvalue computed by Fisher exact test.

Cecal and Fecal Concentration of Polyamines
Feces and cecum content samples were pre-weighed directly in the lysis tubes (soft tissue homogenizing CK 14 tubes, Bertin Tech-

nologies, Rockville, MD, US) and extracted (using ceramic beads) by adding ice-cold MeOH:H2O (4:1; v:v) spiked with internal stan-

dards in the Cryolys Precellys 24 sample Homogenizer (2 x 20 seconds at 10000 rpm, Bertin Technologies, Rockville, MD, US). Ho-

mogenized tissue extracts were centrifuged for 15minutes at 21000 g at 4�C and the resulting supernatant was transferred to LC-MS

vials for the injection into the LC-MS system. For feces, the sample amount normalization was based on weight whereas the cecum

content was extracted entirely (whole cecum per specimen). Thirteen-point calibration curves were generated by the addition of IS

mixture (25 mL) to each calibrator (i.e. standard mixture) (75 mL), vortexed and transferred to LC-MS vials for the injection.

Extracted samples were analyzed by Hydrophilic Interaction Liquid Chromatography coupled to tandem mass spectrometry

(HILIC - MS/MS) in positive mode using a 6495 triple quadrupole system (QqQ) interfaced with 1290 UHPLC system (Agilent Tech-

nologies). The chromatographic separation was carried out in an Acquity BEHAmide, 1.7 mm, 100mm3 2.1mm I.D. column (Waters,

Massachusetts, US). Mobile phase was composed of A = 50 mM ammonium formate and 0.1 % FA in water and B = 50 mM ammo-

nium formate, 0.1 % formic acid in ACN/H2O (8:2; v:v). The linear gradient elution from 100% B (0-1.5 min) down to 60% B was

applied (1.5 min - 12 min) and these conditions were held for 4 min, followed by the initial chromatographic conditioning during

the 5 min post-run for column re-equilibration. The flow rate was 400 mL/min, column temperature 40�C and sample injection volume

2ml. ESI source conditions were set as follows: dry gas temperature 230�C, nebulizer 35 psi and flow 14 L/min, sheath gas temper-

ature 400�C and flow 12 L/min, nozzle voltage 500 V, and capillary voltage 4000 V. Dynamic Multiple Reaction Monitoring (dMRM)

was used as acquisition mode with a total cycle time of 500 ms. Optimized collision energies for each metabolite were applied.

Raw LC-MS/MS data was processed using the Agilent Quantitative analysis software (version B.07.00, MassHunter Agilent tech-

nologies). For absolute quantification, calibration curves and the stable isotope-labeled internal standards (IS) were used to deter-

mine the response factor. Linearity of the standard curves was evaluated for eachmetabolite using a thirteen-point range; in addition,

peak area integration was manually curated and corrected where necessary.

Elisa
1,25-dihydroxycholecalciferol was measured with Abbexa Calcitriol (INN) Elisa kit (ref: abx 513030) in 1:10 diluted plasma samples.

Osteocalcin was measured with Immutopics (quidel) Elisa KIT ref 60-1305 in 1:11 diluted plasma samples. CTX-I was measured with

RatLaps CTX-I EIA Immunodiagnostic Systems (ref: AC-06F1) from undiluted plasma samples. All measures were done according to

manufacturers’ instructions.

Bone Mineral Content
Tibias were dried in oven for 3 days at 60�C. The dry weight of each bonewas recorded (wi) and the tibias were burned and reduced to

ashes with a furnace set at 800�C for 1h. The weight of the remaining ashes was measured (wf), and the ratio between the weight of

the bone ash and the dry weight (wf/wi) was calculated to determine the bone mineral content (Tsai et al., 2017)

TRAP Staining
Cells were fixed with 3.7% Formol (formaldehyde) for 1h at RT and rinsed with water. The staining solution was freshly prepared by

mixing equal amount of Fast violet B salt (ChemCruz ref sc-215029B) solution in acetate buffer (7mg/ml), and Naphtol AS-TR phos-
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phate disodium salt (Sigma ref: N6125) solution in acetate buffer (2mg/ml, 225mM sodium acetate, 75mM acetic acid and 4mM

NaOH). Cells were incubated overnight at 4�Cwith the staining solution, rinsed with water, incubated 30min at RT in Sodium Fluorine

(4.2g/L H2O). and rinsed with water once again before being processed for imaging and analysis. Images were acquired with

ZeissAxio Observer ZI and ImagexpressXL (Molecular devices). The total cells per well were quantified with Metaexpress (5.1.41)

software, and the number of differentiated osteoclasts manually (defined as multinucleated and TRAP+ cells).

Alkaline Phosphatase (ALP) Activity Measurement
Cells were rinsed with cold PBS and scraped in 500ml H2O. After short sonication (2x15sec-10kHtz), samples were centrifuged at 10

000rpm for 15min at 4�C. 100ml of the supernatant was collected and incubated for 10min at 37�C, while the rest of the supernatant

was kept formeasuring the protein concentration. The reactive solutionwas as the following: 10mMp-nitrophenylphosphate, 560mM

2-amino-2-methyl-1-propanol, 1mM MgCl2, pH 10.5. 900ml of the reactive solution was added to the pre-heated 100ul sample and

time monitored until sample turned yellow (approx. 7min). The reaction was stopped with 200ul of 1M NaOH and the time recorded.

Absorbance of the sample wasmeasured at 405nm, and the concentration of the remaining protein wasmeasured using Pierce BCA

Protein assay kit (Thermo scientific ref 23225). The ALP activity was obtainedwith the following formula: ALP activity (nmol PO4/mg of

prot/sec) = [(OD x 1000)/ time(sec)]/protein (mg/ml).

Bone Histomorphometric Analysis
After 24 hours of fixation in 3.8% Formol, bones were dehydrated in absolute ethanol for 3 days followed by overnight incubation in

acetone at -20�C before being embedded in methyl-methacrylate (Merck). 8mm thick transversal sections of the midshaft, and

sagittal section of the proximal femur were cut with Leica RM 22 65 microtome (Leica Corp Microsystems AG) and mounted un-

stained for the evaluation of fluorescence from the calcein deposition. Histomorphometric measurements were performed on the

secondary spongiosa of the proximal tibia metaphysis and on the endocortical and periosteal bone surfaces in the middle of the tibia

using Leica Q image analyzer (Leica) at 40x magnification, and Bioquant osteo software. All parameters were calculated and ex-

pressed according to standard formulas and nomenclatures (Parfitt, 1988): mineral apposition rate (micrometers per day), mineral-

izing surface per bone surface (percentage) and bone formation rate (cubic micrometers per square micrometer per day). Osteoclast

surface per bone surface and numbers were evaluated after TRAP staining performed following the same protocol as for the cell cul-

ture staining on free floating slides and followed by a Methylene blue counterstaining and mounted with Permount (fisher chemical

ref: SP15-100). Sirius red staining was performed with Sirius red dye reagent (Direct red 80 Sigma #P744, in saturated aqueous picric

acid (1.3% in H2O) at concentration of 0.1% w/v).

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Representation and Statistical Analysis
Plots include each datapoint, mean and ± Standard deviation (SD). All p values, n (number of animals) and each applied statistical test

is specified in the figure legends. To compare two different groups we applied Mann-Whitney t test. To compare more than two

groups we applied One-Way ANOVA with Tukey‘s multiple comparison test. All experiments were reproduced at least twice, and

shown are the representative data. In vivomeasurements were done without blinding, while the histomorphometric and biomechan-

ical measurements were done with blinding. No data were excluded from the analysis. Where available, group sizes were calculated

based on power calculations of 0.8. Results were considered significant when p < 0.05 in the respected statistical test and repre-

sented significance as *p <0.05; **p <0.01; ***p <0.001.

We analyzed the data using Prizm Version 8.4.3., and assembled the figures in Adobe Illustrator. We generated the graphical ab-

stract in Powerpoint, using some of the illustrations available at Servier Medical Art.
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Abstract 
Mouse is the most used model for studying the impact of microbiota on its host, 

but the repertoire of species and subspecies from the mouse gut microbiome 

remains largely unknown. Here, we constructed a Comprehensive Mouse Gut 

Metagenome (CMGM) catalogue by assembling all currently available mouse gut 

metagenomes. We recovered 33’109 metagenome-assembled genomes (MAGs) 

from bacteria, 3470 plasmids, and over 120'000 viral contigs, together encoding 

78 million proteins. We integrated all MAGs into 1449 species, of which 71.7% are 

newly identified, and 4007 subspecies. Rarefaction analysis indicates a 

comprehensive sampling of species and subspecies. 300 species represent newly 

identified genera, and we discovered 8 new families. CMGM enables an 

unprecedented coverage of mouse faecal and cecum metagenomes reaching 94%. 

Comparing CMGM to the human gut microbiota shows an overlap of only 18% at 

species, and 11% at the gene level, demonstrating that human and mouse gut 

microbiota are largely distinct.
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Introduction 
Mouse is the most used model for studying the microbiota importance due to 

several factors: availability of samples from different parts of the gastrointestinal 

tract, treatment options, controlled housing environment and diet, defined 

genetic background, and ethical considerations. However, the mouse gut 

microbiota has been poorly characterized, and only a fraction of the diversity 

observed by 16S rDNA sequencing is represented by genomes in public databases1. 

The majority of the studies on the mouse microbiome are performed by 

sequencing variable regions of the 16S, sometimes mislabelled as metagenomics. 

While this technique has allowed a general overview into the microbiota and 

information down to the genus level, it is not suited for identifying species for 

most of the organisms2. Different species from the same genus and even 

subspecies from the same species can exert contrasting functions3, stressing the 

importance of annotating the gene content at a low taxonomic level.  

Shotgun metagenomics allows studying the full microbiota diversity of an 

environment, including uncultured microorganisms, viruses, and plasmids. 

However, its interpretation is limited by the availability of reference genomes. 

Previous efforts led to the creation of a gene catalogue of the mouse metagenome 

(MGC v1)4, by sequencing faecal samples from mice with different genotypes and 

housed in different conditions. This catalogue enables the functional annotation 

of genes and allows a 50% mapping rate of faecal sequences. However, the 

mapping rate of sequences from cecum samples is only 37%, and the catalogue 

does not contain genomic references. Recently developed algorithms enable 

assembly of genomes from metagenomes, leading to a recovery of new species 

from the human gut and other environments5–9. The integrated mouse gut 

metagenomic catalogue (iMGMC)10 increased the fraction of reads mapped to 

genes compared to the MGC v1, however, mapping to the recovered 

metagenome-assembled genomes (MAGs) remains at about 40%10. Accordingly, 

many mouse genomes remain unclassified with the current state-of-the-art, and 

none of the approaches so far provide information of the microbiota on a 

subspecies level. 
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Here we report a Comprehensive Mouse Gut Metagenome (CMGM) collection 

that contains genomes generated by assembling gut microbiomes sequenced by 

us and all publicly available mouse metagenomes. This resource improves the 

mapping rate of genomic reads from mouse faecal and cecum metagenomes to 

over 94% and provides full classification on the level of subspecies, viruses, and 

plasmids. This nearly complete catalogue of the mouse gut bacterial species 

allows comparison between the newly assembled mouse gut microbiomes and the 

human counterpart, highlighting major differences between human and mouse in 

both species' composition and their abundance. 

Results 

Assembly of high-quality genomes from mouse gut metagenomes 
We selected all metagenomic datasets associated with the mouse intestinal tract 

that are sequenced with a paired-end layout from the NCBI sequence read archive 

(accessed December 2019). To these, we added samples generated by our lab 

resulting in 1464 datasets (Extended Data Table 1). Each sample was processed 

using metagenome-atlas11, which handles pre-processing, assembly, and binning 

of the metagenome datasets. The resulting MAGs were filtered based on 

fragmentation (N50>5000) and a quality score calculated from the output of 

checkM12 as ‘completeness minus 5 times contamination’. Bins with a quality score 

of <50 were excluded, resulting in 33’109 MAGs from which 11’373 (34%) had high 

quality (Quality score >90, Fig. 1b, Extended Data Fig. 1a). We included 776 

complete mouse-associated bacterial genomes retrieved from RefSeq belonging 

to 331 species (Extended Data Table 2), which also includes genomes from mouse 

specific culture collections: Oligo-mouse-microbiota13 (12 genomes), and Mouse 

Gut Microbial Biobank (mGMB, 41 genomes)14. As the genomes of the mouse 

Intestinal Bacterial Collection (miBC, 53 genomes)1 were not available, we 

assembled them from the raw reads. Surprisingly, some reference genomes had 

contamination values of 100%, suggesting that the sequenced genomes consist of 

multiple strains. In total, 13 reference genomes did not pass the quality filtering, 
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and we included 816 reference genomes in the CMGM collection, resulting in a 

total of 33’925 genomes. 

While MAGs were more fragmented and had a lower median quality score than 

the reference genomes, the quality score and N50 of the high-quality MAGs were 

comparable to the values for the references (Fig. 1b). For 60% of the reference 

genomes, we recovered MAGs that align to them with high coverage and identity 

(ANI >95%, IQR 94-99%, Fig. 1c). This validates our metagenome assembly 

approach to recover “reference quality” genomes de novo. Some of the remaining 

differences might be attributed to strain variation, as the coverage is higher for 

more similar genomes (Extended Data Fig. 1b).  

Since we assembled genomes from individual samples, the same strain could have 

been recovered multiple times, especially if different gut locations of the same 

 
Fig. 1| Many metagenome-assembled genomes have comparable quality to 
reference genomes 
a, Scheme of the workflow. b, Violin plots showing the quality score, 
completeness, contamination estimated using checkM and the log10 N50 
from the assembly for the reference genomes and MAGs present in CMGM. 
c, Coverage of reference genomes by MAGs (n=494). 

a

b

c
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mouse were sampled. To remove this potential redundancy, we clustered the 

genomes based on the average nucleotide identity (ANI) calculated using 

bindash15. 95% ANI was used as threshold to delineate genomes from the same 

species16,17. For each species cluster, the genome with the highest quality and 

 
Fig. 2| The mouse gut microbiome is predominantly uncultured. 
a, Maximum-likelihood phylogenetic tree of the 1449 bacterial species 
detected in the mouse gut. Clades are colored by culture status. The color 
ring indicates the phylum attribution and the bar in the outer ring indicates 
the median abundance in mouse gut microbiome (centered log ratio). Values 
< 0 are omitted. b, Bar plot of the 40 most abundant species in the mouse gut 
microbiome colored by cultured status. 
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lowest fragmentation was selected as representative, but reference genomes 

were preferred over MAGs. The species representatives were annotated using the 

genomic taxonomy database (GTDB18,19). Species that contain a reference genome 

of an isolate were counted as cultured, even when they might not be available 

from official culture collections. Similarly, species named after an isolated strain 

in GTDB were annotated as cultured.  

Majority of the species from the mouse gut are uncultured 

The CMGM genome collection represents 1449 species (Fig. 2a), of which 71.7% 

have not been previously identified. 76.4% of the CMGM species are uncultured, 

with 17.5% having a mouse-specific cultured strain. 300 represent the first species 

for their genus, and we discovered 8 new families. 218 species do not have a 

cultured species at the order level. Since many of the most abundant species are 

uncultured (Fig. 2b), the sum of cultured species accounts on average for less than 

20% of the mouse metagenome. 4607 genomes contain one or multiple full-length 

16S gene sequences, which allowed us to link 51% of the 1449 species in the CMGM 

catalogue to a 16S sequence. This represents over 50% advance over the latest 

reports linking 484 genomes from the mouse gut to 16S sequences10.  

We used StrainDrep20 to further split the 33’925 genomes into 4007 subspecies. 

We observed clear clusters, for which the genome with the highest quality was 

chosen as representative (Extended Data Fig. 2). Subspecies contain a specific 

subset of genes (Extended Data Fig. 2). In datasets with faeces and cecum samples 

of the same mouse, genomes from the same species belong also to the same 

subspecies/strain. This indicates that our approach consistently recovers 

dominant strains/subspecies.  

To assemble viruses and plasmids from metagenomic and genomic datasets, we 

used a pipeline based on metaplasmid-spades21 and VIBRANT22. The assembled 

plasmids and viral contigs were dereplicated into non-redundant catalogues. We 

recovered 120’983 viral contigs, 1128 of which are complete circular and 3106 are 

of high or medium quality as estimated by VIBRANT. 88% of the contigs were 

classified as lytic, 8.6% as lysogenic, and 3.7% are integrated prophages. The 

66 The comprehensive mouse gut metagenome catalog (CMGM)



Plasmid catalogue consists of 3470 circular plasmids including 48 plasmids which 

were recovered from the 53 assembled genomes of the miBC1.  

Evaluation of the CMGM catalogues  
Rarefaction analysis shows that the number of species reached a saturation point 

at 1036 when considering species with at least two conspecific genomes (Fig. 3a). 

This indicates that the CMGM catalogue contains all species commonly living in 

the mouse gut. However, more rare species remain to be discovered, as the 

rarefaction curves with singletons (species which were recovered only in one 

sample) did not converge. Strikingly, rarefaction analysis reached a saturation 

 
Fig. 3| CMGM catalog provides close-to-complete coverage of the mouse 
microbiome   
a, Rarefaction curves of species and subspecies. b,c, Comparison of mapping 
rates on assembled genomes, plasmids and viruses of the mouse gut 
metagenome on internal (b) and external data (c). d, Overlap of different 
gene catalogs from the mouse metagenome. 
CMGM: this study, iMGM: Lesker et al. 2020, MGCv1: Xiao et al 2015 
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point at 2561 subspecies (Fig. 3a), indicating that the CMGM catalogue also 

contains all subspecies commonly found in the mouse gut. 

CMGM achieves a mapping rate of the mouse metagenome of 95.1% for faecal and 

93.7% for cecum samples. Specifically, the mouse microbiome diversity captured 

by the CMGM species covers 86% of reads from both faecal and cecum samples 

(Fig. 3b). Microbiome profiling using the subspecies representatives increased the 

mapping rate by 6% compared to species alone. Viruses and plasmids added 1.5% 

of mapped reads (Fig. 3b). 

To independently evaluate the mapping rate of the CMGM catalogue, we used an 

external dataset of cecum samples, which was explicitly left out from this 

catalogue, and not contained in previous ones. The CMGM species covered 83% 

of the metagenomic reads, twice as many compared to the previous genome 

collection from the mouse gut9 (Fig. 3c). The addition of subspecies and extra-

chromosomal elements increased the mapping rate by 7% and 1.5%, respectively. 

In total, 91.8% of reads from an external sample were mapped by CMGM, which is 

over 40% increase compared to the maxi-kraken database that contains all RefSeq 

genomes from bacteria, archaea, protist, fungi, and viruses.  

We predicted over 260 million genes from the assembled contigs and clustered 

them to generate the CMGM protein catalogue. This non-redundant protein 

catalogue contains 78 million proteins, over 10 times more than the previous 

mouse gene collections4,10 (Fig. 3d). 83.1% of our gene catalogue could be 

annotated, and 49.7% of genes are linked to 8077 Kegg annotations. To facilitate 

further comparisons, we produced the CMGM gene catalogue clustered at 90 and 

50% amino acid identity. 

To test the applicability of the CMGM, and propose how this catalogue allows 

discovering compelling biological insights, we compared mice from three 

different providers fed a high fat-fed diet (HFD) for 7-8 weeks to control mice on 

chow diet4 (N=67). We used aldex2 with a linear model to account for the different 

mouse providers. Many Becteroidota species were significantly decreased and 

species from the phylum Firmicutes increased (Extended Data Fig. 3A). 

Interestingly, Shannon diversity did not decrease with HFD (Extended Data Fig. 
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3B). This example suggests that using the CMGM catalogue as reference for 

metagenomic studies enables discovering precise and comprehensive changes of 

species induced by a treatment or a disease. It also sets the ground for reanalysis 

of the existing datasets for uncovering species that are involved or altered by the 

condition of interest. 

 

Comparison between human and mouse gut microbiomes 
Studying mice microbiota and its impact on the host as a proxy for humans implies 

their similarities. However, 16S rDNA profiling and gene catalogues don’t allow a 

 
Fig. 4| Human and mouse guts harbor distinct bacterial species. 
a, Venn diagrams of the overlap between mouse and human gut microbiota 
at the species level. b, Phylogenetic tree of abundant species (centered log 
ratio, clr >0) in either human or mouse microbiome. Clades are colored by 
phylum attribution. The black bars in the middle ring indicate shared species 
between human and mouse (ANI > 95%). The bar plot in the inner ring 
indicates the median abundance in human microbiome (inverted axis), and 
the bar plot in the outermost ring the abundance in the mouse microbiome 
(values clr < 0 are omitted). 
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comprehensive analysis of the analogy between human and mouse microbiota 

down to species level. Also, much fewer species from the mouse gut are 

sequenced than from the human gut23. The CMGM catalogue, together with the 

recent creation of genome collections from the human gut24, renders this 

comparison possible. Here, we compared the species representatives from 

CMGM to the ones from the unified human gut genomes24 and applied the same 

criteria as for clustering (ANI > 95%). From the 1449 CMGM species, 18.29% (270) 

were identified in the human gut microbiota (Fig. 4a, Extended Data Fig. 5). The 

shared species account on average for 15.6% of the mouse and 29.6% of the human 

gut microbiome.  

When low abundant species (centred log-ratio (CLR) <0) are left out from this 

comparison only 45 species were shared (Fig. 4b, Extended Data Fig. 4, Extended 

Data Table 3) that corresponds to an overlap of 10% of abundant species. 

Curiously, 27 of the 45 shared species belong to the phylum Bacteroidota, whereas 

only two of them are from the phylum Firmicutes_A. Only 12 species are abundant 

in both microbiomes (CLR >0), 10 of which belong to the phylum Bacteroidota. 10 

out of the 12 most abundant species have cultured representatives. These data 

reveal major differences between human and mouse microbiota at the species 

level.  

To investigate the functional repertoire of the human and mouse microbiome, we 

compared the CMGM protein catalogue to the unified human gut protein 

(UHGP)24 at 90% amino acid identity. Similar as in MGCv14, only a fraction of genes 

could be annotated with Kegg orthologs (50% in CMGM and 13% in UHGP). 

Comparison based on this set of 8077 functional annotations indicates an overlap 

of 99% between the human and mouse microbiome. However, if all 78mio genes 

are taken into account, the overlap drops to 10.8%, corroborating the limited 

overlap of species between these two microbiomes.  

We compared CMGM and UHGG24 at higher taxonomic resolutions based on the 

GTDB taxonomy. In GTDB, if a taxonomic group is polyphyletic, it is split into 

several sister clades based on relative evolutionary divergence18, which permits 

more robust comparisons and correlations. The new clades are usually named 
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with an alphabetical suffix, for example, the phylum Firmicutes is split into 12 

sister phyla. More than half of the species in both microbiomes belong to the phyla 

Firmicutes_A. Firmicutes_A and Bacteroidota (Bacteroidetes) are the most 

abundant phyla in both human and mouse microbiomes (Fig. 5a). Overall, 17 phyla 

have representatives in both human and mouse microbiome. 5 phyla including 

Synergistota and Eremiobacterota are only found in human and not in mice 

microbiota. In contrast, the phylum Deferribacterota and the two species 

Chlamydia muridarum and Chlamydophila psittaci which represent an own 

phylum, are specific to mice. No archaea were reconstructed from the mouse gut 

metagenome, whereas 0.4 % of the genomes in the UHGG belong to this domain. 

At the family level, humans and mice share 91 of the 105 defined taxa, whose 

 
Fig. 5| Human and mouse microbiomes are similar at higher taxonomic 
level.  
a, Phylum abundances in human and mice microbiota. b,c, Correlation of 
average abundance of families (b) and genera (c) in human and mice 
microbiotas. CLR = centred log ratio. 
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c
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average abundance in human and mouse microbiota are correlated (r=0.63, 

Fig. 5b). The families Lachnospiraceae, Oscillospiraceae, and Ruminococcaceae, 

have high abundance in both human and mice. The family Muribaculaceae is 60 

times more abundant in mice than in humans, whereas Bacteroidaceae is 10 times 

less. While at the genus level, 227 of 273 of taxa are shared (83% overlap), the 

abundance of the genera showed only a very limited correlation (r=0.37, Fig. 5c), 

in line with the results based on 16S rDNA seqiencing25. These data show that even 

when at higher taxonomic levels (phylum to family) the mouse and human 

microbiome show similarities, there are major differences of the genera 

abundances and a very limited overlap at the species level. This is further 

supported by comparing the influence of age and obesity on the microbiome of 

mouse and human, which shows that host-adaption is the strongest difference 

(Extended Data Figure 5). 

Discussion 

We generated a comprehensive catalogue of the mouse gut metagenome: 33’925 

genomes, 78 million protein sequences, over 120’000 viral contigs, and 3470 

plasmids. This resource now enables mapping of over 95% of faecal and 93% of 

cecum samples. From the 1449 genomic defined species, 71% are newly identified 

and 51% could be linked to a full-length 16S sequence. Integrated into databases 

of 16S genes, these sequences can help to link the functional repertoire of the 

genome with the 16S gene, therefore leveraging the use of amplicon sequencing. 

Three-quarters of the species are uncultured, and some do not have a 

representative at the order level. Hence, the CMGM catalogue is a valuable basis 

for targeted culturing of these missing strains. 

The CMGM is the first collection containing plasmids and viruses. Expectedly 

most of the viral contigs represent fragments of viruses as they are recovered 

from unfiltered metagenomic reads. Higher diversity might be recovered in 

filtered virome samples from the mouse gut. The CMGM catalogue is also the first 

that contains in-depth information down to the subspecies level. Although it is 

possible to use single nucleotide polymorphisms to detect genotype-diversity in 

metagenome samples, such approaches make it hard to link the genotype to the 
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functional repertoire. On the other hand, the CMGM subspecies are naturally 

linked to a specific subset of genes.  

Saturation in the rarefaction analysis shows that the CMGM catalogue contains 

all main species and subspecies commonly living in the mouse gut. Nevertheless, 

we cannot exclude that new samples may contain diversity that is not part of the 

CMGM, for example, species present in single samples or wild mice. However, 

CMGM is built by assembling all publicly available data from the mouse strains 

that are most experimentally used, thus comprehensively representing the 

microbiome of laboratory mice.  

Comparing the mouse microbiota to the human counterpart reveals overlap and 

correlation of the average abundance from phylum down to family level. As 

suggested by amplicon sequencing25, the genera are qualitatively the same but 

quantitatively different. We observed no correlation between their average 

abundances in human and mouse microbiota, despite identifying 83% of shared 

genera. Whereas a comprehensive and precise comparison at species level 

between the two microbiomes was not previously feasible2,26, the comparison of 

CMGM with the UHGG collection reveals an overlap of only 10% of the abundant 

species. These findings effectively challenge our view on the analogy between 

human and mouse microbiota and may impact the experimental designs and 

approaches for studying the gut microbiota. Different ways can be envisaged to 

overcome these challenges. For example, advanced transplanting human gut 

microbiota into germ-free mice to create ‘humanized’ mouse models that would 

be kept in gnotobiotic conditions, or complementing the work by exploring 

additional animal models 27. To leverage data produced using conventional mice, 

it will be worth finding functional homologues between the species adapted to 

mouse and human microbiota e.g. by identifying ‘guilds’28, groups of species that 

use the same type of resources in a similar way. The functionally annotated 

species in the CMGM collection lays the basis for such work. The knowledge of 

the genomes and a nearly complete mapping rate is a basis for precise analysis on 

higher taxonomic levels and function. Also, the studies included in the CMGM 

might contain biological insights that were not accessible previously, for example 
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because they relate to previously unknown species. The integration with human 

genome catalogues allows easy comparison at higher taxonomic level. 

In summary, CMGM increases our knowledge of the mouse microbiota gene 

repertoire by ten-fold and is the first to identify the subspecies present in the 

mouse gut microbiota, which together with the majority of newly identified 

species allows comprehensive analysis of the mouse gut microbiome at an 

unprecedented depth. This work uncovers major differences between the mouse 

and human gut microbiome identities. 
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Extended Data 

 
Extended Data Fig. 1| Quality estimates of MAGs at a genome level. 
a, Distribution of the MAGs included in the CMGM collection according to 
their completeness and contamination estimated with checkM. MAGs with 
‘completeness -5´contamination`< 50 were excluded. b, Density plot of the 
coverage vs. identity of the MAGs alignments to 494 reference genomes. 

a b
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Extended Data Fig. 2| Subspecies clustering. 
Example of subspecies clustering of three species with > 50 genomes. Top 
panels: Distribution of intra-species pairwise alignments with respect to 
average nucleotide identity (ANI) and aligned fraction. The dashed lines 
indicate the automatically selected threshold for sub-species clustering. 
Lower panels: presence/absence matrix of subspecies-specific gene clusters 
(GC50). Genomes are arranged by the dendrograms build from the pairwise 
ANI values. Gene clusters are ordered by dendrograms based on Jaccard 
distance. 

 
Extended Data Fig. 3| Bacterial changes induced by a high fat diet. 
a, Volcanoplot of coefficients associated with high-fat diet of the generalized 
linear model and the associated p-values corrected using Benjamini-
Hochberg-correction. b, Shannon diversity of the same samples stratified by 
Provider. 

a b
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Extended Data Fig. 4| Species present in both human and mouse 
microbiomes. 
Bar plot of the 45 species shared between human and mouse microbiome with 
a minimal abundance of centred log-ratio (CLR) >0 in either of the two 
microbiomes. The species are ordered according to their taxonomy. Negative 
CLR values indicate abundance that is lower than the geometrical mean of 
species.  

 
Extended Data Fig. 5| PCA of human and mouse metagenome samples. 
Principal component analysis based on the robust Atchison distance based on 
the family abundance of mouse and human samples. a, Human samples come 
from healthy European adults or infants. Young` for mice signifies less than 12 
weeks of age. b, Human samples come from adults that are either healthy or 
obese defined as Body Mass Index (BMI) > 30 kg m-2. In mice, obesity is 
induced by high-fat diet. 

  

a b
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Extended Data Table 1 | Metagenome samples used to construct CMGM.  
The table shows the metagenome samples used for the generation of CMGM. The 

CMGM_Id corresponds to the SRA read id, except for the samples sequenced by 

our lab. The table contains information retrieved from NCBI that was available for 

most of the samples: Name, description, Link to bioproject, collection data, 

country, and submission centre. The column ‘Source’ specifies the organ from 

which the sample was taken. If the information was available in any of the 

metadata. Samples under the bioproject accession PRJNA646351 were sequenced 

for this study. 

Link: 

https://ezmeta.unige.ch/CMGM/v0.1/Creation/input_data/curated_metada

ta_SRAruns.xlsx 

 

Extended Data Table 2 | Reference genomes associated with the mouse gut.  
The table shows the assembly information of reference genomes associated with 

the mouse gut. These genomes were filtered for completeness and contamination 

before integration into CMGM. The columns `Isolated` and `Cultured` label if the 

genome is Isolated and cultured. The `coaction` describes if the genome is part of 

a mouse-specific culture collection. The genomes of the miBC collection are 

assembled for this study. 

Link: 

https://ezmeta.unige.ch/CMGM/v0.1/Creation/input_data/all_mouse_assoc
iated_ReferenceGenomes.tsv 
 

Extended Data Table 3 | Core shared species between the human and the mouse 
microbiota.  
The table shows detailed information about the 45 species shared between human 

and mouse microbiota with a minimal abundance of cantered log-ratio (CLR) >0 

in either of the microbiomes, related to Extended Data Figure 4. The table 

contains the taxonomy and the cultivation status as well as the abundance in 
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relative and CLR. The number of subspecies in CMGM are indicated in the last 

column.  

Link: 

https://ezmeta.unige.ch/CMGM/v0.1/Comparison_with_Human_Microbiom

e/Shared_core_Species.xlsx 

 

Online Methods 

Sequencing of metagenomic data of mice 
The sample collection and metagenomic sequencing were approved by the Swiss 

federal and Geneva cantonal authorities for animal experimentation (Office 

Vétérinaire Fédéral and Commission Cantonale pour les Expériences sur les 

animaux de Genève). Animals were on C57Bl/6J background, commercially 

available through Charles River, France. The mice experiment is detailed in29. 

Paired-end metagenomic libraries were prepared from 100 ngDNA using TruSeq 

Nano DNA Library Prep Kit (Illumina) and size selected at about 350 bp. The 

pooled indexed library was sequenced in a HiSeq4000 instrument at the iGE3 

facility (University of Geneva).  

Collection of public metagenome and genomic data 
We searched the sequence read archive (SRA) of the National Center for 

Biotechnology Information (NCBI) for all publicly available paired-end 

metagenome runs from the mouse microbiome. We specifically excluded samples 

from human origin and amplicon sequences and different body parts than the gut. 

We extracted 1414 metagenome runs belonging to 43 projects. Metadata was 

retrieved using BioServices30 and curated (Extended Data Table 1). We retrieved 

776 assemblies from RefSeq who were linked to a biosample collected from mouse 

(Extended Data Table 2). We excluded reference genomes collected from other 

body parts than the gut or faeces. 
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Metagenome assembly and binning 
Metagenomics and genomic reads were processed using the metagenome-atlas 

v2.311 pipeline with the command ‘atlas run genomes’. The configuration file is 

available at the ‘Code availability’ section. In short, using tools from the BBmap 

suite v37.7831, reads were quality trimmed, and contaminations from the mouse 

genome were filtered out. Reads were error corrected and merged before they 

were assembled with metaSpades v3.1332. Contigs were binned using metabat2 v 

2.1433 and maxbin2 v2.234, and their predictions were combined using DAS Tool v 

1.1.135. For the assembly of the 53 genomes of the mouse intestinal bacterial 

collection, we used the assembly workflow of metagenome-atlas and set 

‘spades_preset: normal’ which uses the basic spades as assembler. The quality of 

the genomes was estimated using checkM v1.112. 

Genome filtering and species clustering  
We used StrainDrep v0.120 to filter and cluster genomes into species. For the 

configuration file see the ‘Code availability’ section. In short, genomes with an 

estimated quality of ‘completeness-5*contamination’ <50 or N50<=5000 were 

excluded. All Pair-wise ANI above 0.8 were calculated using bindash15 and missing 

values were filled with the minimum value observed. Hierarchical clustering was 

performed with average linkage and a threshold of 95% using scipy36. For each 

species cluster, the genome with the highest score based on the following formula 

was selected as the representative.  

Score= Completeness - 5×Contamination + 0.5×log( N50 ) + 100×isIsolate 

Where Completeness and Contamination are estimated using checkM v1.112, N50 

is the N50 score of the assembly contiguity, and ‘isIsolate’ is 1 for isolates and 0 

for MAGs, to ensure that isolated genomes are preferred over MAGs even if they 

have lower quality.  

Phylogenetic and taxonomic analysis 
The species representatives were annotated using the genomic taxonomy 

database toolkit (GTDB-tk v1.218). A maximum-likelihood tree based on the 120 

bacterial marker genes from GTDB was built using fasttree v2.1 37 and rooted at 

the midpoint. The phylogenetic trees are visualized with iTOL v538 and the 
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annotations were prepared using table2itol 

(https://github.com/mgoeker/table2itol). The Pearson correlation between the 

abundance of taxonomic groups in the human and mouse microbiota was 

performed with scipy v1.4.136. 

Inferring cultured status  
Species that contain a reference genome included in the CMGM catalogue are 

counted as cultured from a mouse origin. If GTDB-tk18 was able to annotate the 

species to a reference with ANI >95%, we counted the species as cultured from a 

non-murine source. In both cases, if the reference genome was excluded from 

RefSeq (i.e. metagenome-assembled genomes) or labelled as uncultured we 

counted the species as isolated but not cultured.  

Quantification 
We used bbsplit31 with the parameters ‘ambiguous2=best minid=0.9’ to map 

metagenomic reads to the references with 90 identity. The mapping rates were 

calculated as a fraction of the reads mapped to the reads used from the bbsplit 

log file. For most quantification, the mapped reads per genome were summed and 

the centred log ratio (CLR) was calculated using the sci-kit bio package 

(http://scikit-bio.org/) after imputing zeros using a multiplicative replacement 

approach. When relative abundance was used as a measure, we estimated the 

genome coverage as the median of blocks of 1000bp. For viruses and plasmids, the 

coverage over the whole contig was used. For the quantification, we used 31 

cecum and 28 faecal samples from mice from our lab29,39 as well as 184 faecal 

samples from the MGC v14. For comparison, we quantified reads using kraken240 

with the maxikraken2 database 

(lomanlab.github.io/mockcommunity/mc_databases.html, March 2019). The 

abundance estimation of species in the human microbiome is based on the 

quantification in 13132 samples8. We used aldex2 v1.18 for differential abundance 

analysis using the default parameters. Shannon diversity was calculated using the 

package scikit-bio (http://scikit-bio.org/) based on the relative abundance.  
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Gene prediction and clustering 
Genes were predicted using prodigal v2.641 on all the assembled contigs. For the 

metagenome assemblies, we used the anonymous mode and for genome 

assemblies the parameters ‘–p normal --closed -m’. For the reference genomes, 

we downloaded the gene predictions from RefSeq. All predicted gene products 

were clustered using linclust42 at 100% average amino acid identity (AAI), 0.8 

coverage, and the parameters ‘ --kmer-per-seq 80 --cov-mode 1’. Genes were 

linked to the contigs and to the genomes they belong to and annotated using 

EggNOGmapper v243, which uses DIAMOND44 to map genes to the EggNOG DB 

v545. The catalogue was further subclustered using the same parameters as above 

but 90, and 50% AAI. We calculated the overlap between the 90% clustered 

catalogue with previous mouse gene catalogues, or the UHGP-9024 using 42 at 90 

AAI. Code availability: https://github.com/metagenome-

atlas/genecatalog_atlas 

Subspecies clustering  
Subspecies were identified using StrainDrep v0.120. In short, we calculated all 

intra-species pairwise genome alignments using minimap2v 2.1746 and computed 

the average nucleotide identity (ANI). We used hierarchical clustering based on 

average linkage using scipy v1.4.136. The optimal number of subspecies was 

automatically selected based on the maximal silhouette score. As the silhouette 

score can only be calculated for two or more groups, we classified species having 

over 95% of pair-wise comparisons with ANI > 99.5% as a single subspecies. 

Similar to the species clustering, for each subspecies cluster, the genome with the 

highest score was selected as representative genome. 

The genes present in the genomes from a given species were mapped to gene 

clusters outlined above at 90% AAI. Gene clusters present in more than 80% of all 

the genomes of a subspecies were considered as this subspecies’ core genes. Gene 

clusters that are part of the core genes in more than 80% of the subspecies are 

correspondingly considered as this species core genes and the genes present in a 

subspecies that are not part of the species core genes are subspecies specific. 
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Assembly of viruses and plasmids 
We assembled circular contigs from our metagenome and genome datasets using 

(meta- )plasmid-spades v3.1321. The circular contigs from all samples were de-

replicated using dedupe31 and filtered for specificity to virus or plasmids using 

viralverify (github.com/ablab/viralVerify). In addition, we used VIBRANT v 1.2.022 

to scan for viral fragments in our metagenome-assemblies. Viral fragments were 

dereplicated using bbsketch31 based on Average amino acid identity >=99%. 

VIBRANT estimates the quality of vial contigs and classifies them as lytic, 

lysogenic. Prophages were also detected using VIBRANT. 

Data Availability 
The metagenomic samples sequenced for this study are available from the NCBI 

sequence read archive under the project id PRJNA646351. The assemblies 

generated in this study are deposited under study accession PRJNA646353. 

Reference genomes, MAGs, viruses, and plasmids used in this study together with 

their annotations are available at https://ezmeta.unige.ch/CMGM/v0.1. The 

configuration files and the metadata of the samples used for the construction of 

CMGM are available through the same link. 
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4.2 CMGM enables comparative analysis of mouse metagenomes 87

4.2 CMGM enables comparative analysis of mouse
metagenomes by relating functional changes to
driver species

This section shows how the comprehensive mouse gut metagenome catalog
(CMGM) can be used to analyze mouse metagenome data on both a functional
and a species level and to relate the changes to treatments of the host. It shows
also how to relate changes in the microbiome’s functional potential to the re-
sponsible species. This analysis was is part of the revised manuscript available
from bioRxiv.

To illustrate how this catalog allows discovering compelling biological insights,
we analyzed the metagenome from mice exposed to cold ambient air temper-
ature. Cold exposure is a stimulus that activates the classical brown fat and
promotes beige cell development within the subcutaneous white adipose tissue
(Cannon &Nedergaard, 2017; Chechi et al., 2013; Stojanović et al., 2018). As such,
it is an extensively used intervention for enhancing thermogenic andmitochon-
drial activity in adipose tissues, leading to decreased adipose tissue amount and
improved glycemic status. We (Chevalier, Stojanović, et al., 2015) and others
(Ziȩtak et al., 2016) showed that cold exposure leads to a marked shift of the
microbiota composition observed by 16S analysis, which is in itself sufficient to
improve the insulin sensitivity, induce tolerance to cold, increase the energy
expenditure and lower the fat content– an effect in part mediated by activation
of the brown fat (Chevalier, Stojanović, et al., 2015; Ziȩtak et al., 2016) and brown-
ing of the white fat depots in the cold microbiota-transplanted mice (Chevalier,
Stojanović, et al., 2015; Cypess et al., 2015; Ghorbani et al., 1997; Guerra et al.,
1998; Kopecky et al., 1995). These results indicate an existence of a microbiota-
fat signaling axis; however, the signaling cascades mediating this process re-
main poorly understood. As noticed previously (Chevalier, Stojanović, et al.,
2015), herewe confirmed that Akkermansiamuciniphila, the only representative
of the phylumVerrucomicrobiotawas eliminated by cold exposure (Fig. 4.1A). The
species NM07-P-09 sp004793665 (the most abundant species from the phylum
Actinobacteriota) and the Muribaculaceae species UBA7173 sp002491305 were
even more significantly decreased (𝑃𝐵𝐻 < 1𝑒−4, Fig. 4.1A). We found that cold
exposure leads to an increase of the family Lachnospiraceae and a decrease of
the families Muribaculaceae, and Oscillospiraceae. On a functional level, cold
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Fig. 4.1 CMGM links functional changes to driver species
a, Volcano plot of species changes in mouse cecal microbiota
upon cold exposure. Significantly changed species are colored
by their phylum. PBH: P-value corrected for multiple testing us-
ing Benjamini-Hochberg procedure. b-d, Bar plots of significantly
changed pathways in mouse cecal microbiota upon cold exposure.
The contribution to the relative abundance of each module is par-
titioned by genus b+c and family d.
CE: Cold exposure, RT: Room temperature control

exposure led to a doubling of butyrate and lactate production. These changes
were mainly due to the increase of the family Lachnospiraceae, specifically the
increase of the uncultured genus COE1 (Fig. 4.1B, C). To address whether these
uncovered metagenomic changes are indeed reflected in differences of the ac-
tual metabolite levels, we looked at the germ-free mice transplanted with mi-
crobiota from the cold-exposed mice or from their RT-kept controls. Trans-
plantation of the cold-adapted microbiota led to an increase in the production
of butyrate, lactate, propionate, and succinate in the recipients’ cecum com-
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Fig. 4.2Metabolite changes by cold-adapted microbiome
Dot-plot of metabolite changes in ceca of germ-free mice trans-
planted with cold-adapted microbiota compared to RT-microbiota
transplanted controls (Data from Chevalier, Stojanović, et al., 2015).

pared to germ-free mice inoculated with microbiota from control mice (Fig. 2).
Interestingly, the increased lactate was also measured in the cecum and serum
of mice with an intermittent fasting feeding regime (G. Li et al., 2017), which has
been shown to induce browning via the induction of the Vascular endothelial
growth factor (Kim et al., 2017). Similarly, succinate is linked to the increase
of thermogenesis (Mills et al., 2018). We found a decrease of the prokaryotic
succinate dehydrogenase, which metabolizes succinate to fumarate, suggest-
ing a mechanistic link between the cold-induced microbiota changes and the
adipose tissue browning.

We also observed a decrease in Lipopolysaccharide (LPS) synthesis, both in
an LpxL-LpxM–dependent and –independent way, primarily attributed to the
cold-induced reduction of Muribaculaceae (Fig. 4.1D). LPS administration leads
to reduced core body temperature and heat release, correlated with mitochon-
drial dysfunction (Okla et al., 2015). In contrast, genetic deletion of the LPS
receptor, the toll-like receptor 4 (TLR4), leads to resistance against high caloric
diet-induced obesity, improved glucose tolerance and insulin sensitivity, and
adipose tissue browning (Fabbiano et al., 2018). These findings suggest an addi-
tional possible link between the cold-induced microbiota changes and adipose
tissues both at mechanistic and bacterial level, contributing to improved insulin
sensitivity and browning of the white fat

This example illustrates the CMGM catalog’s usability as a reference for meta-
genomic studies, enabling discovering precise and comprehensive changes of
species and the related function induced by a treatment or a disease. The
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CMGM sets the ground for reanalysis of the existing datasets for uncovering
species and bacterial functions that are involved or altered by the condition of
interest.

4.2.1 Methods

Sequencing of metagenomic data of mice

The mouse experiments were approved by the Swiss federal and Geneva can-
tonal authorities for animal experimentation (Office Vétérinaire Fédéral and
Commission Cantonale pour les Expériences sur les animaux de Genève). An-
imals were on C57Bl/6J background, commercially available through Charles
River, France. The mice experiment is detailed in (Chevalier, Stojanović, et al.,
2015). Paired-endmetagenomic libraries were prepared from 100 ng DNA using
TruSeq Nano DNA Library Prep Kit (Illumina) and size selected at about 350 bp.
The pooled indexed library was sequenced in a HiSeq4000 instrument at the
iGE3 facility (University of Geneva).

Quantification

We used BBsplit (https://jgi.doe.gov/data-and-tools/bbtools)) with the pa-
rameters ‘ambiguous2=best minid=0.9’ to map metagenomic reads to the ref-
erence genomes with 90 identity. For most quantification, the mapped reads
per genome were summed, and the centered log-ratio (CLR) was calculated us-
ing the sci-kit bio package (http://scikit-bio.org/) after imputing zeros using
a multiplicative replacement approach. We used the two-sided Welch test and
Benjamini-Hochberg correction to estimate the significance of changes in clr-
transformed genome abundance between experimental groups. We estimated
the genome coverage as the median of coverage over 1000bp blocks, to calcu-
late relative abundance.

Functional annotation

The species representatives of both the CMGM and the UHGG were annotated
using DRAM (Shaffer et al., 2020). A Kegg-module is inferred to be present
if ¾ of all the steps were present in a genome. As there are no modules for
short chain fatty acids in Kegg we created custom modules (see the ‘Code’ sec-
tion). The step-coverage was calculated with DRAM for all Kegg-modules. The

https://jgi.doe.gov/data-and-tools/bbtools
http://scikit-bio.org/
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metagenome-side abundance of functional modules was calculated as the sum
of the relative abundances of all genomes containing a module. We used the
two-sided Welch test and Benjamini-Hochberg correction to estimate the sig-
nificance of changes in module abundance between experimental groups.

Code Availability

The code for the analysis of the cold-exposed microbiota is available from
GitHub: https://github.com/SilasK/CMGM

https://github.com/SilasK/CMGM




Statistical analysis ofmicrobiomes

In this chapter, I explain what I have learned about the statistical analysis of
microbiome data. Many of the concepts relate to compositional data analyis
CoDa. I summarize important concepts that were developed firstly for amplicon
sequencing and show their applications on metagenome data.

5.1 How not to interpret microbiome data?

Regardless of the sequencing technology and workflow used for quantifying a
microbiome, the typical output is an abundance table, a table with non-negative
values, integers most of the time, also known as counts. We obtain counts as
the output of most amplicon or metagenomics analysis which might tempt us
to interpret them as counting organisms or that the counts somehow relate to
the number of organisms in the sample.

Most of the time, we only sequence a fraction of the (biological) sample of the
microbiome, which distorts the data in many ways. To begin with, the num-
ber of reads obtained from different samples can vary in the orders of magni-
tude. A common practice to account for this difference in sequencing depth is
to transform the counts into relative abundance by dividing by the total num-
ber of reads per sample. Relative abundance can be serviceable for visualizing
the microbiome but is less so for their analysis. Relative abundance profiles
of microbiomes give the impression that each quantified species can be ana-
lyzed independently from the other, but that is not the case. Due to the se-
quencers constraining the reads to a fixed total number, the data is not only
relative (to the total number of reads) but also compositional. Compositional
means that the observed abundance of any given species is dependent on the
observed abundance of all other species. For example, the decrease of an abun-
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dant member of a microbial community leads to an apparent increase of lower
abundant members, which can be even significant.

We had this situation when analyzing the microbiota of children with diarrhea
(Kieser, Sarker, et al., 2018). We were surprised by an increase of Streptococcus
irrespective of the pathogen causing diarrhea, which we related to the flushing
out of the majority of the colonic microbiome, which makes Streptococcus only
appear to increase. Diarrhea is an obvious example, but the compositionality
leads to a negaitve correlation between all species that affects the interpretation
of microbiome data in more subtle ways.

It is important to note that microbiomes can be quantified in absolute terms if
a measure for the number of cells is available. In a landmark study Vandeputte
et al. use flow cytometric enumeration to quantify the microbial load and mul-
tiply it with the relative abundance based on amplicon sequencing (Vandeputte
et al., 2017). The authors show convincingly how the number of microorganisms
can vary by up to ten-fold in microbiome samples of healthy individuals. Micro-
biome load can be a fundamental driver of themicrobiome alterations in Crohn’s
disease. Flow cytometric enumeration needs fresh stool samples, which is diffi-
cult to obtain for larger study cohorts. However, it was shown that quantitative
PCR of the 16S gene could also reliably be used to transform the relative abun-
dance of amplicon sequencing into absolute counts (Tettamanti Boshier et al.,
2020).

The fact that microbiome data is compositional is still not widely appreciated.
At the beginning of my P.h.D., Gloor et al. published an article entitled “Micro-
biome Datasets Are Compositional: And This Is Not Optional”, where they show
how the compositionality of microbiome data affects all areas of data inter-
pretation from ordination, clustering, network analysis to differential (relative)
abundance determination. They highlight fatal issueswith common approaches
for analyzing microbiome data that do not account for its compositionality. For
instance, standard statistical tests or even microbiome-specific tools such as
LEfSe (Segata, Izard, et al., 2011) give biased results. Similarly, most metrics for
microbiome data, such as the UniFrac distance, also suffer from this problem.
In the same article, the authors also show that there are tools that explicitly take
the compositionality of the data into account and can make the interpretation
of microbiome data more robust.
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5.2 Compositional data analysis of microbiome
data

The core idea of compositional data analysis (CoDa) is to analyze (microbiome)
data not as independent abundances but rather as ratios between species to
describe a sample. The ratios are the same whether the data are counts or
proportions. They are also not affected by differences in sequencing depths
nor unmapped reads. The idea of compositional data analysis goes back to
John Aitchison, who formalized the analysis of data that consists of proportions.
He proposed to transform compositional data using the geometric mean. This
transformation is called centered log-ratio (CLR) and is defined as

𝐶𝐿𝑅( ⃗𝑥) = log( ⃗𝑥) −mean(log( ⃗𝑥))

For each sample vector ⃗𝑥 that contains either counts or relative abundance.
Taking the logarithm of the species abundance transforms them to ratio to the
geometric mean of the abundances or the mean of the log-transformed abun-
dances. Because the logarithm of zero is undefined, one needs to deal with the
zeros before applying the log. A zero in a count table does not necessarily mean
that a species is absent from a sample. It is also possible that a low-abundant
species is not detected due to undersampling or other systemic biases (Silver-
man et al., 2020). In this respect zeros should be treated as missing values.
Fortunately, there are many acceptable ways to deal with the missing values in
sequencing data. The most basic approach is to impute a small numeric value;
0.65 is commonly used. Multiplicative replacement adjusts these imputed val-
ues to preserve the relative multivariate structure of the data (J. A. Martín-
Fernández et al., 2003; Palarea-Albaladejo & Josep Antoni Martín-Fernández,
2015). Counts can be modeled as a probability distribution, where zero is a
possible outcome (Fernandes et al., 2014) or estimated using matrix comple-
tion Martino et al. Noteworthy, zeros are less a problem in metagenomics data
compared to amplicon data because of spurious mapping of reads to genomes,
which makes zeros in count tables very unlikely.
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Fig. 5.1 Ordination plots of a dataset Robust Aitchison PCA (RAPCA),
PCA based on Aitchison distance with zero-imputation based on
matrix completion (Martino et al., 2019), compared to PCoAs based
on the weighted unifrac or the Bray-Curtis distance. RAPCA is able
to discriminate bwetewen the two groups (red and blue) even with
lower samples (left column). Source (Martino et al., 2019).

5.2.1 Ordination and multivariate statistics

The CLR.transformation makes the data symmetric and linearly related, so that
they can be easily be interpreted by traditional statistics and machine-learning
algorithms. What is more, the simple difference between two data points be-
comes a meaningful �-diversity metric, sometimes named Aitchison distance.
The Aitchison distance is a proper linear distance, making it ideal for multivari-
ate analysis, clustering, and ordination. Ordination refers to the representation
of all samples of a study in a single plot. It is usually the first step of an (ex-
ploratory) microbiome analysis. The highly dimensional data needs to be trans-
formed into a low-dimensional, preferably two-dimensional, space. However,
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the dimensional reduction should keep as much as possible of the variability to
visually or statistically discriminate between groups and identify outliers. As the
typical distancemetrics, such as Jensen-Shannon, Bray-Curtis, andUniFrac, are
not linear distances, this has to be achieved using a principal coordinate analysis
(PCoA), which not only takes time to calculate but is also sensitive to inclusion
or exclusion of samples (Wong et al., 2016). PCoA, based on standard metrics,
discriminates mainly on the most abundant members of a community, which
might not affect the most discriminatory species between groups (Gloor et al.,
2017; Martino et al., 2019). Another major problem for the ordination of micro-
biome datasets is sparsity, the fact that most species are absent frommost sam-
ples. Sparsity can lead to a distortion of gradients in the ordination plot using
standard distant metrics, often referred to as the Horseshoe-effect (Kuczynski
et al., 2010; Morton et al., 2017).

In contrast, the Aitchison distance can be used in a principal component anal-
ysis (PCA), which is not only swift to calculate, but also robust to sparsity
(Wong et al., 2016; Morton et al., 2017), meaning that the exploratory analysis
is reproducible even if additional samples are included or outliers excluded
(Figure 5.1).Both principal component analysis and principal coordinate analysis
identify the most important components of the data. In addition, PCA identi-
fies which species contribute to which extent to the components; these values
are referred to as the feature loadings. They allow the direct identification of
species that contribute the most to the differences in the datasets, for example,
which species contribute the most to differences between clusters separated
by the PCA. It is possible to plot the feature loadings on the same plot as the
PCA-transformed data, enhancing exploratory data analysis efficiently.

5.2.2 Differencial abundance analysis

CLR transformed abundances can directly be used for differential abundance
analysis. Even if the plot of CLR values might seem unalike a plot with rela-
tive abundance, its interpretation is intuitive (Figure 5.2). Higher CLR values
represent a higher abundance of a species in a sample, whereas negative val-
ues represent low abundances. The difference between the mean of the two
groups can be intuitively interpreted as the log-fold-change between the two
groups. The CLR-transformed values are approximatively normally distributed,
which renders the use of the parametric tests justified, which have more power
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than assessing the significance of relative abundance values using the non-
parametrical tests.

Relative abundance Compositional data analysis

Log FC

Group1      Group2 Group1      Group2

Fig. 5.2 The univariate comparison of the abundance of a species
both as relative abundance and under the compositional data anal-
ysis paradigm. The significance of the relative abundance values is
assessed using a Mann–Whitney U test, whereas a Welch test was
used for the centered log-ratios (CLR). The difference between the
average CLR of the groups is the log fold change.

Differential abundance analysis is often the final goal of microbiome analysis.
After removing outliers and checking the data for inhomogeneities, one would
like to identify which microbes are most significantly different between the two
groups.

It is crucial to keep in mind that the CLR transformation is not an actual nor-
malization (Quinn, Erb, et al., 2018). It does not remove the constraint and the
correlation bias between the different species’ abundances in a sample. The
CLR-transformed data can give the impression that they refer to single species.
However, the transformed data refer to the ratios of the species abundance to
the geometric mean of the abundance. The geometric mean can change with
the inclusion or removal of species. Therefore, slight variations of the CLR are
proposed to mitigate this dependence by taking the geometric mean of all the
values in the interquartile range (Wu et al., 2017).

5.2.3 Ratio based biomarker discovery

A more general approach is to calculate ratios between species or taxa directly.
For instance, the ratio between the phyla Bacteroidetes and Firmicutes or be-
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tween the genera Prevotella and Bacteroides are well known examples used in
the field. Even when their associations with specific host phenotypes is put
into question (Magne et al., 2020), these ratios represent an example of robust
biomarkers that can be used to characterize microbiomes even across studies1.
Instead of calculating all ratios betweendifferent taxa andmanually testing their
association with the metadata (e.g., groups), more sophisticated methods are
available that search more efficiently and control the false discovery rate.

For instance, the tool phylofactor generalizes this idea by looking for searches
for the optimal split in a phylogenetic tree to create a ratio, or balance, with
the strongest association with the metadata (Washburne et al., 2019). It can
identify broad clades of species that account for maximum variation or more
specific clades that are most significantly associated with the metadata. This
framework can build models based on multiple metadata variables. Phylofactor
can identify differences between clades anywhere in the phylogenetic tree and
is not limited to the annotated taxonomic levels. For instance, it can be used on
taxonomically unannotated OTUs or genomes.

However, like all phylogenetic analyses, it is also constrained by the tree. Tools
like codacore (Gordon-Rodriguez et al., 2021) can identify ratios of any combi-
nations of species associatedwith themetadata. Species can be either summed,
similarly as one would add the abundance of all species that exhibit the same
pathway, or multiplied to capture multiplicative interactions. The more species
are combined to create a ratio, the better the ratio is associated with the meta-
data. However, to limit over-fitting and to make the ratio more interpretable
fewer species are desired. A parameter in codacore allows tuning how many
species should be included to create a ratio resulting in easy-interpretable and
robust biomarkers.

This novel machine learning framework termed ratio based biomarker analysis
(Quinn, Gordon-Rodriguez, et al., 2021), fully accounts for the biases in (micro-
biome) sequencing data and allows the integration of multiple omics data. This
framework presents many exciting opportunities for thorough measuring and
analysis of microbiome data.

1However it is important to standardize the extraction protocol, which is an important con-
founding factor for the Bacteroidetes-Firmicutes-ratio (Magne et al., 2020).





Discussion

6.1 Genome-resolved metagenomics enhances the
analysis of metagenomes with a need for
reference genomes

The goal of my P.h.D. was to enable the analysis of metagenomes a need for ref-
erence genomes to study the microbiome’s influence on the host’s health. The
core methodology I implemented is the reconstruction of genomes frommeta-
genomes. Together with Joseph Brown and Lee Ann McCue from the Pacific
Northwest National Laboratory, USA, we developed metagenome-atlas. This
tool allows to recover genomes from metagenomes and to perform analysis
based on them. It performs all steps from quality control, assembly, genome
recovery, and annotation. The program was downloaded over 10’000 times and
cited 19 times in the first year after its publication. Already before its publi-
cation, the open-source program was adopted by a community of users. The
feedback of the users helped us to make it robust and easy to use. In our lab,
we used it primarily to analyze the functional potential of the mouse gut micro-
biome, but it was used to analyze various types of metagenomes from anaerobic
lakes to plant-associated and soil microbiomes. The simplicity to start analyz-
ingmetagenome data (We claim you can start with only three commands)makes
the tool also attractive for companies.

Not surprising, metagenome-atlas is not the only pipeline that performs assem-
bly and binning. For example, the pipelines MetaWRAP, Sunbeam, and SqueezeMeta
(Uritskiy et al., 2018; Clarke et al., 2019; Tamames & Puente-Sánchez, 2019) per-
form similar analysis using practically the same programs. What is unique to
metagenome-atlas is that it annotates the metagenome samples based on the
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recovered MAGs with both taxonomy and functional potential. This is to say
that it uses a dataset-specific genome reference. To explain why this is a cru-
cial advantage, let memake an excursus about measuring themicrobiome.

6.2 Measuring the microbiome

A fundamental step of almost every endeavor in science is measuring. We
measure to compare between different experiments, samples, or even studies
and draw generalizable conclusions from them. Measuring in the context of
sequencing-based approaches often comes down to mapping (short-) reads to
a reference (-genome) and counting the mapped reads.

Nevertheless, measuring is not straightforward, as we will see, both with 16S
rDNA sequencing as metagenomics. One has to define appropriate units for
quantification of the microbiome. For this, one has to consider a tradeoff be-
tween specificity and comparability.

6.2.1 Defining units for 16S amplicon sequencing

There is a long-standing discussion on how to define units for 16S amplicon se-
quencing. In a typical amplicon study, most sequences are only remotely similar
to annotated species. One option is to map a sequenced amplicon to the closest
matching sequence in a database of curated 16S genes, like SILVA (Quast et al.,
2012). This closed-reference approach has the advantage that the annotated
units can be compared between studies (At least the one that uses the same
version of the same database). However, the mapping to the database might
be ambiguous, and many new variants specific to the study might be missed. It
is often much more informative to cluster all the sequenced amplicons for one
study and use them as measuring units. As these clusters do not necessarily
correspond to biological species, they are called operational taxonomic units
(OTUs). This de novo-clustering approach has the disadvantage that the OTUs
are specific to one study, limiting the inter-study comparison.

In 1994, E Stackebrandt & Brett M. Goebel proposed 97% similarity as a species
threshold for the full-length 16S gene. This threshold was adopted for amplicon
sequencing (Patrick D. Schloss & Handelsman, 2005), even though this tech-
nique is based on a small fraction of the gene. More recent analyses of the
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correspondence between the 16S gene and species found that 99% would be a
better threshold for the full-length 16S rRNA gene and 100% for amplicon se-
quencing (Edgar, 2018).

However, at such a high threshold, sequencing errors create spurious OTUs
unless they are appropriately dealt with. Tools, such as DADA2 have an efficient
algorithm to denoise the reads in order to distinguish sequencing errors from
biological variation (Benjamin J Callahan et al., 2016). The 100% clusters of the
denoised reads are also referred to as amplicon sequence variants (ASVs). ASVs
combine the advantages of the de novo- and the closed-reference approach.
ASVs cover all sequence variancewithin a dataset and are unique and consistent,
allowing them to be compared across different datasets (Benjamin J. Callahan et
al., 2017).

Critics of 100% ASVs point out that a genome may be split into multiple ASVs if
it contains multiple copies of the 16S gene that are sufficiently diverged (Patrick
D Schloss, 2021). Re-clustering of ASVs based on correlation across different
samples could mitigate this problem. But it also confirms that amplicons of the
16S rRNA gene are not suited to achieve consistent species resolution as previ-
ously mentioned (Edgar, 2018; Johnson et al., 2019). In conclusion, the ASVs, are
the most specific and comparable unit to measure a microbiome even though
these units do not correspond precisely to species.

6.2.2 Defining units for metagenomics

Whereas in 16S amplicon sequencing, the denoised reads or ASVs are the units
for quantification, for shotgun metagenomics reference units to which the
reads can be mapped still needed to be defined. Usually, the taxonomic unit
of species is used for metagenome profiling, which permits the results to be
compared among studies and previous knowledge.

The main problem for metagenome quantification was, until recently, the lack
of reference genomes. In the absence of good references, a tool like mOTUs was
invaluable. This tool creates taxonomic units based on ten universal single-
copy marker genes (Sunagawa et al., 2013). Because this tool is based on uni-
versal marker genes, it allows targeting virtually all (prokaryote) genomes in
metagenomes and, therefore, precise estimation of their relative abundance. It
is possible to create mOTUs even for low-abundant and unknown species by
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assembling these genes from metagenomes and linking them through the cor-
relation of their coverage across many samples.

As described above, genome-resolved metagenomics allows the generation of
reference genomes for metagenomics. Now, the problem becomes how to map
metagenomic reads efficiently to the ever-growing reference databases. In a
breakthrough publication in 2014, Derrick E Wood & Steven L Salzberg showed
that it is possible to circumvent the time-consuming step of precise alignment
and directly assign reads to taxonomy utilizing exact 𝑘-mer-matches. The tool
called Krakenwas used to show that classifications, which previously took hours,
were tractable in minutes. Notwithstanding, most 𝑘-mers are not specific to a
species, which leads to the classification ofmany reads at higher taxonomic lev-
els. It is shown that this problem is only aggravated with the inclusion of more
and more reference genomes (Nasko et al., 2018). As an alternative to decom-
posing the whole genome into more or less specific 𝑘-mers, it makes sense to
search for genome regions, usually genes, specific for a species. The classical
tool metaphlan is based on this approach (Segata, Waldron, et al., 2012), and the
idea was reused in a quantification tool based on the collection of recently re-
covered humanMAGs (Nayfach et al., 2019). Mapping only to a subset of specific
genes accelerates the profiling while keeping the ambiguity low.

However, all these tools depend on closed (species) databases. Insofar they
have the same disadvantages as 16S OTUs that are defined based on a closed-
reference. Even the term operational genomic unit (OGU) is used, which echoes
the term OTU (Zhu, Huang, et al., 2021). Because the reference usually does
not contain the exact strain(s) present in the sample, sub-optimal mapping is
expected. The presence of multiple strains in a microbiome additionally com-
plexifies quantification (See example in section 1.2.2). Finally, while the quan-
tification on species levels is ideal for comparison with other studies, much of
the subspecies diversity is ignored, showing the tradeoff between comparability
and specificity again.

Dataset-specific genome reference

The problem can, naturally, be solved by the creation of dataset-specific refer-
ences through genome-resolved metagenomics. Ideally, one would recover the
genome of each strain in a sample. Limitations of the assembly and binning of
low abundant genomes make this impossible. Assembly needs minimal cover-
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age to correctly assemble a genome1, and strains that aremore than 98% similar
are merged in the same assembly (Fritz et al., 2019).

Combining the genomes recovered frommultiple samples allows complement-
ing the catalog of genomes that serve as a reference. For instance, a strain
that is low in abundance might have a nearly identical strain that is abundant
in another sample. Therefore, collecting the MAGs recovered from all samples
of a study allows quantifying low-abundant strains in samples where they are
unrecoverable. On the other hand, it does not make sense to include every
genome in the reference. The redundancy can create ambiguous results during
the quantification as reads will have multiple mapping sites. Therefore MAGs
are usually de-replicated before they are used as a reference for quantification.
Genomes are usually clustered based on their ANI, and the genome with the
highest quality is chosen as representative. As an alternative, one might choose
the medoid, the genome that represents the cluster the best. Commonly the
threshold of 95% average nucleotide identity is used for de-replication.

This is the strategy implemented in metagenome-atlas (Ch. 2). Each sample is
assembled and binned separately (optionally using differential abundance by
mapping the reads from other samples to the assembly). The bins are then de-
replicated, and the best genome is chosen for each cluster. The threshold is set
to the common species threshold but can be set lower to capture subspecies
variation. This approach creates a dataset-specific reference that allows consis-
tent quantification of all the samples. Low-abundant species can still be quan-
tified if they are recovered in at least one sample. The annotation of the species
representatives with a standard taxonomy allows comparison beyond the study.
Though this method is resource-intensive, it optimizes specificity and compa-
rability, representing similar advantages as ASVs over OTUs.

6.3 Inference of metabolic pathways and linking it
to the host health and the driver species

In general, researchers are not only interested in knowing the composition of
a microbiome, the “who is there?”, but also “what are they doing?” To reliably

1The assembly of a single prokaryote genome needed eight-fold coverage to be entirely as-
sembled in a simulated experiment. (Fritz et al., 2019)
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infer what functions microbes are presently exhibiting, one would need to se-
quence their expressed genes (meta-transcriptomics) or even the metabolites
of themicrobiome (metabolomics). The sampling ofmetatranscriptomics is fea-
sible, though the transcripts are more sensitive to environmental influences
and highly variable in time because cells can change gene expression rapidly to
adapt to changing environmental conditions. Metagenomics allows us only to
answer the question “What can they do?” by inferring the functional potential
of microbes.

As described in chapter 3, we developed a method based on genome-resolved
metagenomics to infer the functional potential metagenomes. We analyzed 32
samples from mouse feces and cecum with metagenome-atlas. The tool recov-
ered about a thousand MAGs belonging to 147 species. Then we annotated the
representative genome for each species with the functional potential, especially
metabolic pathways. Pathways were inferred to be present in genomes if most
(threshold 80%) of the steps described for the pathway were present in the
genome. We calculated the ‘abundance’ of a pathway as the sum of all the rela-
tive abundance of species containing the pathway. We found that warm expo-
sure leads to a microbiome with increased polyamine synthesis. The predicted
change in increased polyamines was confirmed by targeted metabolomics and
could be linked to a large extent to the increase of the species Akkermainsia
muciniphila (Figure 6.1 on the facing page). Hence, our approach not onlymakes
it possible to identify the change in functional potential of amicrobiomebut also
to link it to the driver species. In so far, we were able to fulfill the hopes of a
genome-centric approach to functional metagenomics as described in section
1.1.2.

In contrast to other tools that calculate relative pathway abundance for the
whole microbiome, our method calculates the abundances of pathways inde-
pendent from each other. The rationale behind this is that an additional func-
tion in a genome does not constrain the functional potential of other functions.
For example, a microbiome, where all microbes can degrade galactose and fu-
cose, has an abundance of 1 for these two pathways and not 0.5, ignoring other
pathways.

For the study in Chevalier, Kieser, et al., 2020, the pathway prediction was
performed outside metagenome-atlas using the MetaCyc database (Caspi et al.,
2016). In the meantime, we integrated DRAM (Shaffer et al., 2020), a robust func-
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Fig. 6.1 Relative abundance of the bacteria that exhibit the path-
way spermine and spermidine synthesis. The relative abundance is
summed at the genus level. Source: Chevalier, Kieser, et al., 2020
Figure S6B.

tional prediction tool, into a newer version of the program that allows inferring
KEGG modules (Kanehisa & Goto, 2000) and other annotations. See section 4.2
as an example.

The functional changes were assessed with a non-parametrical test based on
relative abundance. According to what I described in ch. 5, it would be bet-
ter to explore ways for statistical analysis of pathway abundance that take the
compositional nature of microbiome data into account. One way would be to
calculate the log ratio of the abundance values 𝐴:

log
𝐴pathway

1 − 𝐴pathway

= log
∑ 𝐴species with pathway

∑ 𝐴species without pathway

Even better would be to extend the calculation of such ratios to include the
Abundaces of multiple pathways. For example, the ratio between the abun-
dance values of a synthesis and degradation pathways for a molecule could be
more predictive than one pathway alone. Machine-learning tools described in
sec. 5.2.3 should be perfectly suited to identify the ratios of pathways associated
with the metadata automatically.
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6.4 Metagenomics in a post-assembly era

At the beginning of my Ph.D., Tyson and his collaborators re-analyzed many
public metagenomes and recovered nearly 8’000 genomes (Donovan H. Parks,
Rinke, et al., 2017). Their publication marked the beginning of a new era of
large-scale (re-)assembly in metagenomics (See Fig. 6.2 ). Other studies soon
followed. During my thesis, three groups assembled and processed almost all
publicly available human gut metagenomes (Almeida et al., 2019; Nayfach et al.,
2019; Pasolli et al., 2019). Collections of genomes for the gutmicrobiome of farm
animals were also released during my P.h.D. (Stewart et al., 2019; Glendinning et
al., 2020). Each study recovers dozens of new species, and rarefaction analyses
show that saturation is approaching.
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Almeida 2019
Pasolli 2019

Fig. 6.2 The plot shows studies that published sets of metagenome-
assembled genomes (MAGs). The list is not exhaustive but shows
the general trend to increased numbers of MAGs.

As described in chapter 4, we took the challenge to create a comprehensive col-
lection of reference genomes from the mouse gut microbiome by processing all
publicmousemetagenomeswith metagenome-atlas. Rarefaction analysis shows
that our collection contains practically all bacterial species living in the gut of
laboratory mice. We were surprised how few species were shared between our
catalog from the mouse gut and the human counterpart. This, hereto infeasible
analysis, effectively challenges the views on the analogy between human and
mouse microbiota.

Similarly, Lesker et al. recovered a large set of mouse metagenomes and tried
to link them to 16S rDNA genes in order to enhance amplicon sequencing.
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Beresford-Jones et al. created MAGs from the mouse gut and cultivated 276
new strains from the same environment.

With the accumulation of large-scale studies that recovered genomes from
metagenomes, the lack of reference genomes for major host-associated mi-
crobiomes diminishes. Did we achieve our goal to enable the genome-centric
analysis metagenomes, which hereto lacked reference genomes? I think it is
fair to answer yes to this rhetorical question.

Accordingly, we are about to enter a post-assembly era, where the assembly
of metagenomes is no longer necessary, and microbiomes can be profiled di-
rectly. Having comprehensive catalogs of genomes for many microbiomes is a
milestone in the analysis of microbiomes2. If the profiling of metagenomes is
simple, it becomes even more important that we use the results effectively, as I
explained in chapter 5.

Does this render assembly and genomic binning unnecessary? Are pipelines,
like metagenome-atlas, no longer useful? Surely, there are still challenges in sev-
eral non-gut metagenomes. For example skin, and lung microbiomes yield low-
biomass samples and are therefore difficult to assemble. Also, soil and ocean
microbiomes are more complex than the typical gut microbiome, and therefore
harder to assemble3. But even for metagenomes with good coverage, assembly
and binning can give a crucial benefit to capture dataset-specific strain varia-
tion as I explained in section 6.2.2.

6.4.1 Improving current genome collections

The field has come a long way in recovering genomes from metagenomes, but
there is still room to improve the current genome references: First, by improv-
ing the quality of the recovered genomes. Second, by deepening the resolution
by including more strain-variation and finally, by widening the scope by includ-
ing plasmids, viruses, and eukaryotes.

2Actually, it is included in Nature’s Milestones in human microbiota research (2019)
3Even though, for the ocean microbiome, a significant improvement was made (Lucas Paoli

et al., 2021) recently.

https://www.nature.com/collections/bhciihjhei
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Recover complete genomes from metagenomes

The genomes reconstructed from metagenomes are of variable quality. While
multiple genome reconstructions are available for highly prevalent species, and
one can choose the best one as a representative, rare species are often rep-
resented only by one medium-quality MAG. Incomplete or “composite MAGs
reduce the quality of public genome repositories” (Shaiber & Eren, 2019). More-
over, even what is called a high-quality genome is mostly an estimation based
on marker genes (See section 1.2.3). The quality estimation is dependent on the
marker gene set used. Therefore a bias in the marker gene set induces a bias
in the genome estimation. More fundamentally, I think genome quality estima-
tion is overused. Metagenomic binners are evaluated on the quality score of
their genome predictions. Marker genes are even used during the binning by
some algorithms or by tools that combine and consolidate the results of multi-
ple binners (Sieber et al., 2018). I fear this to be an example of Goodhart’s Law:
“When ameasure becomes a target, it ceases to be a goodmeasure.” (Strathern,
1997).

The fundamental problem of estimating the quality of a genome solely by as-
sessing the presence and duplication of marker genes is that this approach is
entirely blind to contigs that do not contain marker genes. A MAG may have
many contigs from a wholly different species without affecting the contamina-
tion estimation. Similarly, a ‘complete’ genome might still be missing genome
content that is not assessed by marker genes. New tools have been developed
that claim to purify a MAG of this unassessed contamination (MAGpurify, and
conterminator (Nayfach et al., 2019; Steinegger & Steven L. Salzberg, 2020)) or
to search for additional contigs that were missed (Spacegraphcats and GraphBin
(C. Titus Brown et al., 2020; Mallawaarachchi et al., 2020)). However, often it is
only through manual curation that one can achieve an accurate and complete
genome from metagenomes (Chen et al., 2020).

Ideally, a MAG would be assembled in one continuous sequence. For now, this
only rarely happens. It is important to note that most large-scale efforts use
single-sample assembly, as this approach is the most scalable. Binning meth-
ods that efficiently use differential abundance (See box on page 13) are promis-
ing ways to improve the continuity and quality of MAGs. Of note, long-read
sequencing, which makes assembly much easier or even superfluous, is becom-
ingmore common. Also, culturing ofmicrobes frommetagenomes is advancing.
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Both techniques have the potential to complement or even replace the recovery
of genomes from metagenomes.

Including subspecies diversity

Lucas Paoli & Shinichi Sunagawa postulate that we are in the middle of a res-
olution revolution in microbiomics4. Increased sampling will allow us to study
the microbiome in more detail in space and over time. The third dimension in
which they see resolution increase is in the taxonomic dimension.

Having recovered over 30’000 genomes for the mouse gut, we were able to in-
vestigate subspecies diversity. We were able to identify subspecies with spe-
cific gene contents. We saw a consistent strain-boundary at 95.5% ANI for
many species (ch. 4 Extended Data Fig. 2). The boundary is also visible in strain
comparisons based on isolates genomes (Van Rossum et al., 2020). Below this
threshold, two organisms derived from a common ancestor have practically no
more genome fraction in common (Sakoparnig et al., 2021). We found many
strain pairs with similarity > 95% ANI because mice are coprophages and share
their microbiome with other mice within a cage. By taking the subspecies into
account, we were able to increase the mapping rate of a new mouse meta-
genome from 83 to 90%.

Going beyond bacteria

Most of the DNA in a gut microbiome comes from bacteria. However, often
overlooked are organisms from the domains archaea and eukaryotes. Eukary-
otes, such as fungi and protists, can be very large compared to prokaryotes and
make up a sizable fraction of a microbiome’s biomass without contributing an
equal fraction to the metagenome (DNA). Viruses, plasmids, and other genetic
elements are also essential members of microbiomes that are easily sequenced
using shotgun metagenomics.

For generating the CMGM, we not only looked for MAGs of bacteria but also
viruses and plasmids. We did not assemble any genomes of archaea, which let
us assume that they are not living in the mouse gut of laboratory mice. We
did not look for eukaryotes. Nevertheless, we think our catalog is an important
resource to perform a comprehensive analysis of the mouse gut microbiome.

4The study of microbiomes. Metagenomics is a subfield thereof.
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The inclusion of plasmids and viruses increased the mapping rate of a mouse
metagenome sample from 90% to 94%.

6.4.2 Comprehensive sets of functionally annotated genomes
for the human and mouse gut

For the update of CMGM (Sec. 4.2), we annotated comprehensive sets of
genomes from the mouse and human gut. We made the functional annotations
publicly available, together with the code, to calculate pathway abundance and
associate functional changes with the condition or treatment of interest. These
resources enable others to benefit from the advantages of genome-resolved
metagenomics and efficiently perform functional analysis of mouse and human
metagenomes.
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Common traits between the beige fat-inducing stimuli
Ozren Stojanovi�c1,2, Silas Kieser1,2 and Mirko Trajkovski1,2,3

Adipose tissues play an essential role in regulating the metabolic

homeostasis and can be found in almost all parts of the body.

Excessive adiposity leads to obesity and can contribute to

metabolic and other disorders. Adipocytes show remarkable

plasticity in their function, which can be pushed toward energy

storage,or energy expenditure — a ‘browning’ of fat. Browning is

controlled by the cellular milieu of the adipose tissue, with

sympathetic innervation and by immune responses as key

integrators of the signals that promote browning. Here, we

describe the latest contributions to our understanding of how

different metabolic stimuli can shape the adipocyte function. We

especially focus on the role of the gut microbiota and the negative

energy balance in regulating the browning.
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Introduction
Adipose tissue is traditionally classified into white and

brown fat, with opposite functions. White adipose tissue

(WAT) stores energy mainly in form of triglycerides,

packed as a large, single lipid droplet that occupies most

of the volume in the mature white adipocyte. It secretes

hormones and cytokines (‘adipokines’), which mediate,

both locally and systemically, many aspects of physiology

[1]. WAT is found in many parts of the body, but the main

locations are the subcutaneous and abdominal visceral

depots; the latter being associated with more adverse

metabolic effects [2,3]. Brown adipose tissue (BAT) is of

different origin and shares similar developmental

progenitors with skeletal muscle cells [1,4]. BAT oxidizes

triglycerides (and to lesser extent, glucose) in its mitochon-

dria, with energy dissipated as heat, a function conferred by

the BAT-specific Uncoupling protein 1 (UCP1). Brown

cells are rich in UCP1+ mitochondria, they are typically

smaller than the white adipocytes, and have multilocular

appearance with several lipid droplets. BAT first developed

in placental mammals as a mechanism to maintain body

warmth in cold temperatures. It is now firmly established

that functional BATexists in adult humans [5]. BATdepots

are located in interscapular region (by far the most impor-

tant location in rodents), perirenal and axillary depots; in

humans, the main depot is between anterior neck and

thorax [1,5]. BAT activity is induced by cold exposure and

the sensation is transmitted to the BAT through sympa-

thetic innervation. Norepinephrine released from the

nerve endings stimulate the b3-adrenergic receptor

(b-AR). Agonists of b-AR are frequently used to mimic

cold exposure and experimentally induce thermogenesis.

Beta-adrenergic signaling raises intracellular cyclic AMP

levels [6], activates protein kinase A, which induces expres-

sion of key browning transcriptional regulators, Peroxisome

proliferator-activated receptor gamma (PPARg) coactiva-

tor 1-alpha (PGC1-a) and PR domain containing 16

(PRDM16). Exact downstream steps that drive longer-

term recruitment of brown cells and thermogenic program

are currently investigated and converge on PPARg as a key

transcriptional driver.

In response to cold brown fat cells also emerge within the

subcutaneous WAT, called ‘beige’ or ‘brite’ cells (brown-

in-white) in a process referred to as fat browning. With the

brown cells they share UCP1+ mitochondria, multilocular

appearance and thermogenic capacity, but they also seem

to express unique markers, such as Cd137 or Tmem26 [4].

The thermogenic activity of the beige fat is also depen-

dent on the sympathetic nervous system via norepineph-

rine signaling [6,7]. Lineage tracing studies suggest that

in the subcutaneous WAT, the beige adipocytes emerge

by de novo differentiation [8], but also that mature beige

adipocytes may interconvert into white and vice versa

[9,10]. The available evidence does not exclude that both

might be the case, in particular during different cold

exposure periods, or after re-exposure to cold.

Many ways to induce browning
While it is easy to see how induction of thermogenesis in

cold conditions is a beneficial evolutionary adaptation of

warm-blooded animals, browning can be activated in

numerous other conditions in which the benefit of ther-

mogenesis is less obvious. Interestingly, we recently

noted that many browning stimuli have in common an

Available online at www.sciencedirect.com

ScienceDirect

www.sciencedirect.com Current Opinion in Cell Biology 2018, 55:67–73

132 Review article



overarching leitmotif — a negative energy balance [11��]
(Figure 1).

In skeletal muscle, the response to increased energy demand

in endurance exercise is mediated by the transcription factor

PGC-1a, which promotes oxidative over glycolytic metabo-

lism [12]. Exercise also decreases adiposity and promotes an

anti-inflammatory phenotype in WAT. Several groups

observed in mice models that physical exercise or PGC-

1a overexpression reduces adipocyte size and lipid content

in WAT, but also stimulates browning, primarily in subcu-

taneous WAT [13–16]. However, there is no solid evidence

yet that exercise induces browning in humans [17]. In

addition, even the browning in mice might depend on

particular exercise regime (reviewed in [18]): for example,

small effect of exercise on browning of WAT is greatly

enhanced by environmental enrichment (physically and

socially more complex housing) in mice’s cages [16]. A

molecular link between exercise and browning has been

sought in secreted myokines in trained mice [19,20]. Among

them, meteorin-like-1 (Metrnl) [21] is a target of Pgc1a4,
and is secreted from exercised muscles likely to induce

browning through a type 2 immune signaling cascade [22].

Adipose depots are an evolutionary answer to conditions

of decreased energy availability, a situation frequently

encountered by nearly all animals. In these cases, previ-

ously stored triglycerides are released from adipocytes in

form of free fatty acids and glycerol, as an energy source

for most of the body. Surprisingly, caloric restriction (CR)

in mice by 40% without malnutrition or lean mass loss,

markedly induces beige adipocyte appearance in WAT,

with functional thermogenic capacity and increased oxy-

gen consumption rates [11��]. Genetic inhibition of the

type 2 immune signaling (described below) suppresses

the CR-induced browning and subcutaneous WAT loss.

Interestingly, CR reduces the total energy expenditure

[23] and this is further lowered by blocking the type

2 immunity and browning during CR, suggesting oppos-

ing roles of different organs to the energy balance during

CR [11��]. On the other hand, mice that grow obese due to

genetically increased appetite (ob/ob), have lower core

body temperature and insufficient browning and cold

resistance [24], though data for humans are less conclu-

sive [25–27]. Interestingly, very low caloric restriction

(VLCR) in obese humans (�800 kcal/day) does not pro-

voke browning [28�]. This could go in line with the
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studies in mice, where CR coupled to malnutrition also

limits the browning. That might indicate that other

signals are able to overwrite the browning effects, and

would agree with the hypothesis that after VLCD or lean

mass decrease, the signals of the lean mass loss (e.g.,

muscle cell death and/or inflammation) could contribute

to the overall metabolic slowdown and weight gain over-

shoot in patients after VLCD. Accordingly, it is likely that

the balance of fat versus lean mass loss, as well as the rates

and magnitude of the fat loss during different diets and

the obesity status, play a critical role in shifting the

adipocytes toward beige or white. Thus, an alternative

explanation for the lack of browning during the VLCD in

the obese humans could be that the fat loss (14.0% in

males, 8.5% in females) is not sufficient to induce the

browning. Additional work is needed to uncover which of

these scenarios could explain this phenomenon.

Intermittent fasting consists of alternating days of ad
libitum feeding with days of fasting. Increased food intake

on the feeding day compensates for previous fasting and

the bodyweight remains constant. It is therefore different

from CR, but still induces a fasting stress. Intermittent

fasting increases the expression of beige markers at room

temperature and thermoneutrality, and protects against

weight gain during high-fat diet [29�,30�]. Interestingly,

just as it happens in cold exposure and exercise [14,31],

there is increased vascularisation of the subcutaneous

WAT through induction of vascular endothelial growth

factor (VEGF). This periodic expression of VEGF in

WAT was sufficient to induce browning [30�]. In human

WAT, VEGF expression correlates with the expression of

browning-markers as well as alternatively activated, M2

polarized macrophages.

The list of conditions [32] that may not necessarily

require heat production, but cause browning goes further:

cancer cachexia [33] (a pathology associated with increased

resting energy expenditure), elevated FGF21 circulatory

levels [34,35] (a hormone secreted by liver that mediates

starvation response), FXR agonism [36] (bile acid regula-

tion), and upon gastric bypass surgery in mice [37]. Another

recently-discovered potent stimulus that drives fat

browning linked with energy loss is the microbiota deple-
tion [38].

Gut microbiota is linked with browning of fat
Intestines are colonized by trillions of symbiotic bacteria

called the intestinal microbiota. These bacteria break

down undigested fibers and can produce vitamins and

secondary metabolites. Often overlooked is the role of

microbiota biomass in the heat production [39]. Mice and

rats treated with antibiotics have initial drop of �1 �C in

the core body temperature [40]. To raise body tempera-

ture back for 1 �C, the metabolic rate of the animal must

increase 10% [41]. Microbiota depletion by means of

antibiotics treatment improves insulin sensitivity

[38,42]. Despite the preferential increase in the glucose

uptake to the WAT during the microbiota depletion,

these fat stores have decreased volume and weight,

and their adipocytes show multilocular appearance and

increased oxygen consumption rates [38,43]. They do this

by developing functional beige cells in the inguinal

subcutaneous adipose tissue and to a lesser extent in

the perigonadal visceral adipose tissue. This phenome-

non is also evident when microbiota-depleted mice are

maintained at thermoneutrality. Similar increase in

browning is found in germ-free mice that are born and

raised aseptically. Microbiota depletion improves meta-

bolic health in lean mice, obese leptin-deficient (ob/ob)
mice and high-fat diet (HFD)-fed mice [38].

Cold exposure leads to a major reshaping of the gut micro-

biome [43,44], marked by increase in Firmicutes and Defer-
iobacteres phila, and decrease of

Verrucomicrobia. Transplanting the cold-adapted micro-

biota to germ-free recipients is sufficient to increase the

browning of WAT [43], and it also induces the BAT activity

[43,44] whencomparedtocontrols transplanted with micro-

biota from room temperature-housed mice. This contrib-

utes to a better cold tolerance and an improved glycaemic

status of the cold-microbiota transplanted mice. Similarly,

the intermittent fasting regime [29�] induces increase in

Firmicutes, a phylum that has been associated with

increased browning markers and insulin sensitivity in obese

patients [45]. Transplantation of this intermittent fasting-

altered microbiota also leads to enhanced browning [29�].

Microbiota produce and transform metabolites, which can

act as signaling molecules throughout the body. Bile acids

(BA) induce energy expenditure in muscles and BAT,

and could induce browning of WAT through binding to

BA receptor TGR5 [46]. The microbiota of cold-exposed

mice has less deconjugation activity, and the BA profile is

richer in conjugated BAs similarly to the germ-free mice.

Short chain fatty acids (SCFA) are fermentation products

which can signal to the host and provide preferred energy

source for particular cell types. SCFAs, especially acetate,

have been shown to induce browning [44,47,48]. Short

(6 days) and long term intermittent fasting (IF) increase

acetate as well as lactate in the blood. This shift could not

be induced in germ-free mice on IF but was when they

received gut microbiota from fasted mice. Lactate pro-

duced during IF or exercise could increase VEGF, which

contributes to the browning. Heat, and acidification due

to acetate and lactate can be sensed directly by vagus

afferents through transient receptor potential cation chan-

nel subfamily V member 1 (TRPV-1) [41]. In obese

patients, Firmicutes family Ruminococcaceae, which is also

increased in cold [44], was associated with elevated

plasma acetate levels, which are turn positively linked

with the expression of PRDM16 in subcutaneous WAT

and insulin sensitivity [45]. In lean subjects, exercise for

6 weeks is associated with an increase of genera producing

Energy balance and browning Stojanovi�c, Kieser and Trajkovski 69

www.sciencedirect.com Current Opinion in Cell Biology 2018, 55:67–73

134 Review article



SCFAs [49]. All these signaling cascades could be poten-

tial ways by which microbiota exerts its effects of brown-

ing, and they remain to be experimentally tested.

Browning and mobilization of fuel
It is not clear why would the browning program be

activated during CR or microbiota depletion in mice,

as this can lead to further increase in the energy expen-

diture. One possibility is that during decreased caloric

intake, the lower thermal isolation due to the diminished

adiposity would need to be compensated by increased

thermogenesis. The interesting finding however, is that

these effects also occur at thermoneutrality and are

orchestrated by immune-derived signals. Thus, identify-

ing the signals upstream of this immune-fat axis would be

an exciting area for further research.

As mentioned above, a feature that is common to many

diverse and seemingly unrelated physiological, or interven-

tional stimuli of browning is the energy stress: the energy

available to the cells is lower than energy expenditure (or so

is signaled to the fat). To respond to this negative energy

balance, the organism must respond by correcting one or

both sides of the energy balance seesaw. Energy scarcity

occurs due to different reasons. During cold exposure, extra

energy is needed to produce heat. Loss of intestinal micro-

biota deprives organism of calories that become accessible

to organism through bacterially-assisted degradation of

food, while exercise increases caloric demand due to mus-

cular work. Activators of browning, the sympathetic ner-

vous system and the thyroid hormones, are stimuli associ-

ated with increased metabolic rate and energy

consumption. So, could browning of white fat, at least in

part, serveasa means for energymobilizationorcontrol, and

how? Two groups in 2017 knocked-out lipolysis specifically

in BAT [50��,51��]. Shin et al. [51��] generated UCP1-Cre-

driven, BAT-specific knock-out of CGI-58, a protein that

co-activates adipose triglyceride lipase (ATGL) and,

through association with lipid droplets, participates in

cytosolic lipolysis. Using similar approach, Schreiber

et al. [50��] knocked-out ATGL in BAT. These mice,

which could not oxidize BAT’s own fat as they would do

normally [52], were not cold sensitive and had normal heat

generation and UCP1 content in BAT, even while fasting.

As a compensation, the sympathetic nervous signaling

induced lipolysis and browning in subcutaneous WAT,

and released fatty acids that fueled the BAT thermogene-

sis. In contrast, blocking lipolysis in all (adiponectin-

expressing) adipocytes suppressed the brown fat induction

and rendered mice [50��,51��] and (by pharmacological

inhibition) men [53] more cold-sensitive. Although the

beige adipocytes express UCP1, and as such should have

the deletion of the ATGL or CGI-58 also in the beige cells,

it was not tested whether indeed there is a strong enough

induction of the Cre expression to drive the KOs in these

adipocytes without cold exposure-induced UCP1 expres-

sion. The lipolysis rates are higher in the browned adipose

tissuescomparedto thewhite [11��,33],whichmight leadto

increased release of glycerol [11��] and fatty acids [33] into

the blood. Thus, it would be interesting to know if the fatty

acids during cold or CR are released primarily from the

beige or the white adipocytes, or equally from both; and

whether the local increase in the fatty acids ultimately

induces the browning of the white adipocytes. Distinction

between beige, brown and white fat has been recently

blurred by the discovery that not all beige adipocytes

express UCP1, and those that do not are still capable of

thermogenicity [54–56].

A recurrent pattern that is associated with beige adipo-

genesis is the recruitment of anti-inflammatory signals in

fat [11��,22,38,57]. Low-grade inflammation of white fat is

a hallmark of obesity and is linked to macrophage infil-

tration in the WAT, their activation into inflammatory M1

cells, and diminished capacity for browning. Chawla and

colleagues showed [57] that after cold exposure, the WAT

is infiltrated by an increased number of eosinophils that

could drive macrophage polarization from pro-inflamma-

tory towards anti-inflammatory state, leading to fat

browning. The exact mechanisms by which WAT-resi-

dent macrophages could exert their browning role are

debated: it was originally proposed that macrophages

locally produce norepinephrine, which would lead to

sympathetic-independent induction of browning [58�].
To test this, tyrosine hydroxylase, the rate limiting

enzyme in the catecholamine biosynthesis, was

knocked-out in hematopoietic cells. This did not dimin-

ish the browning upon cold exposure, and the bone

marrow-derived macrophages did not release norepineph-

rine upon IL-4 stimulation [59�]. In a possible solution to

the apparent paradox, it was recently revealed that M1

cells stay attached to adipocytes by binding of integrin a4
to VCAM-1 [60], thus sustaining the inhibition of the

beiging program. An additional model that could explain

the ways by which macrophages can regulate the brown-

ing is the recent discovery of sympathetic neuron-associ-

ated macrophages (SAMs), a subpopulation of macro-

phages that take up and degrade norepinephrine

[61�,62�] released from the network of sympathetic nerve

endings in the WAT [63]. SAMs are increased in obesity

and ablation of norepinephrine uptake increases brown-

ing. The increased sympathetic innervation in BAT can

be influenced by the macrophages [58�], but the potential

importance of the immune cells in influencing the sym-

pathetic innervation in subcutaneous WAT has not yet

been addressed. CR [11��] and the microbiota depletion

[38] lead to anti-inflammatory macrophage polarization,

and irrespective of the exact downstream mode of action,

blocking the type 2 immunity suppresses the fat brown-

ing. During aging, the inflammasome-driven norepineph-

rine degradation in macrophages blunts lipolysis [61�].
With respect to the increased lipolysis during CR and

microbiota depletion, it would be interesting to study if

the lipolysis contributes to the CR-induced and
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microbiota depletion-induced browning, and is there an

interplay between the lipolysis rates and type 2 immunity.

Finally, other immune cells can also interact with sym-

pathetic b-AR signaling, where a Stat6/Pten axis could

link the regulatory T cells with the fat function and

browning: CD8+ T-cells inhibit the beiging process

[64] and regulatory T-cells [65] promote it.

Conclusion
It is estimated that activated brown fat in adult human

would burn an energy equivalent of 4.1 kg of adipose

tissue in one year [5]. We are just starting to understand

the various physiological conditions that lead to beige fat

development. These diverse environmental and physio-

logical cues cause energy stress and activate common set

of mediators of browning: sympathetic, anti-inflamma-

tory, and bile acid signaling, which promote catabolism in

adipose tissue through shared transcriptional cascade.

Thus, uncovering the mechanisms that lay upstream of

the type 2 immune cascade, but also the link between the

microbiota changes and the fat browning necessary to

understand the core triggers that promote beiging, could

lead to novel therapeutics to improve metabolic health.
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